Розробка фотокаталізаторів на основі бамбукового вугілля і порошку лісової суниці для отримання водню методом розщеплення води

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2020.213277

Ключові слова:

бамбукове вугілля, порошок лісової суниці, алюмінієва фольга, біомаса, водень, фотокаталіз

Анотація

В останні роки водень став об'єктом пильної уваги як екологічно чисте і ефективне джерело енергії. Метод фотокаталізу з використанням фотокаталізатора на основі біомаси є альтернативною стадією отримання водню шляхом розщеплення води. У даному дослідженні матеріалами біомаси, що використовувались для розробки фотокаталізаторів при виробництві водню є бамбукове вугілля (БВ) і порошок лісової суниці (ПЛС). Джерелом світла для фотокаталізу служила галогенна лампа з довжиною хвилі 560 Нм. Отриманий газоподібний водень вимірювався за допомогою датчика MQ-8, який здатний вимірювати газоподібний водень в 100-10000 млн−1. Виробництво водню значно збільшується при поєднанні фотокаталізаторів БВ і ПЛС. На основі аналізу зображень за допомогою скануючого електронного мікроскопа (СЕМ) при використанні програмного забезпечення Image J, БВ і ПЛС мають негативний і позитивний заряд відповідно. Ароматичне вуглецеве кільце в БВ має енергетичну щілину 2,48 еВ, тоді як в ПЛС має більш низьку енергетичну щілину 2,32 еВ завдяки функціональним групам, що збуджують електрон в ароматичному кільці ПЛС. Взаємодія між позитивним і негативним зарядами при поєднанні БВ і ПЛС створює другу нижчу енергетичну щілину в комбінованому каталізаторі 1,66 еВ, яка має тенденцію збільшувати електронну щільність на поверхні каталізатора. Більш щільні електрони дестабілізують більшу кількість водню і ковалентних зв'язків у воді, збільшуючи виробництво водню в 20 разів в порівнянні з тільки БВ або в 4 рази в порівнянні з тільки ПЛС. При додаванні в нижню частину труби реактора алюмінієвої фольги (АФ), продуктивність фотокаталізатора покращилася. Матеріалом АФ служив алюмінієвий сплав 8011 товщиною 0,02 мм і діаметром 80 мм. АФ виконує дві важливі функції, а саме прискорює реакцію відновлення і полегшує розрив водневих і ковалентних зв'язків у воді

Спонсори дослідження

  • Ministry of Research
  • Technology
  • and Higher Education of the Republic of Indonesia (Kementerian Riset Teknologi Dan Pendidikan Tinggi Republik Indonesia)

Біографії авторів

Yepy Komaril Sofi’i, Brawijaya University Jl. Mayjend Haryono, 167, Malang, Indonesia, 65145

PhD

Department of Mechanical Engineering

Eko Siswanto, Brawijaya University Jl. Mayjend Haryono, 167, Malang, Indonesia, 65145

Doctor of Mechanical Engineering

Department of Mechanical Engineering

Winarto Winarto, Brawijaya University Jl. Mayjend Haryono, 167, Malang, Indonesia, 65145

Doctor of Mechanical Engineering

Department of Mechanical Engineering

I Nyoman Gede Wardana, Brawijaya University Jl. Mayjend Haryono, 167, Malang, Indonesia, 65145

Professor of Mechanical Engineering

Department of Mechanical Engineering

Посилання

  1. Hansen, J., Kharecha, P., Sato, M., Masson-Delmotte, V., Ackerman, F., Beerling, D. J. et. al. (2013). Assessing “Dangerous Climate Change”: Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature. PLoS ONE, 8 (12), e81648. doi: https://doi.org/10.1371/journal.pone.0081648
  2. Ren, R., Zhao, H., Sui, X., Guo, X., Huang, X., Wang, Y. et. al. (2019). Exfoliated Molybdenum Disulfide Encapsulated in a Metal Organic Framework for Enhanced Photocatalytic Hydrogen Evolution. Catalysts, 9 (1), 89. doi: https://doi.org/10.3390/catal9010089
  3. Zhong, Y., Shao, Y., Ma, F., Wu, Y., Huang, B., Hao, X. (2017). Band-gap-matched CdSe QD/WS 2 nanosheet composite: Size-controlled photocatalyst for high-efficiency water splitting. Nano Energy, 31, 84–89. doi: https://doi.org/10.1016/j.nanoen.2016.11.011
  4. Dincer, I., Acar, C. (2015). Review and evaluation of hydrogen production methods for better sustainability. International Journal of Hydrogen Energy, 40 (34), 11094–11111. doi: https://doi.org/10.1016/j.ijhydene.2014.12.035
  5. Hibino, T., Kobayashi, K., Ito, M., Nagao, M., Fukui, M., Teranishi, S. (2018). Direct electrolysis of waste newspaper for sustainable hydrogen production: an oxygen-functionalized porous carbon anode. Applied Catalysis B: Environmental, 231, 191–199. doi: https://doi.org/10.1016/j.apcatb.2018.03.021
  6. Chua, C. S., Ansovini, D., Lee, C. J. J., Teng, Y. T., Ong, L. T., Chi, D. et. al. (2016). The effect of crystallinity on photocatalytic performance of Co3O4 water-splitting cocatalysts. Physical Chemistry Chemical Physics, 18 (7), 5172–5178. doi: https://doi.org/10.1039/c5cp07589k
  7. Tahir, M., Amin, N. S. (2013). Advances in visible light responsive titanium oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels. Energy Conversion and Management, 76, 194–214. doi: https://doi.org/10.1016/j.enconman.2013.07.046
  8. Chiarello, G. L., Dozzi, M. V., Scavini, M., Grunwaldt, J.-D., Selli, E. (2014). One step flame-made fluorinated Pt/TiO2 photocatalysts for hydrogen production. Applied Catalysis B: Environmental, 160-161, 144–151. doi: https://doi.org/10.1016/j.apcatb.2014.05.006
  9. Mu, R., Zhao, Z., Dohnálek, Z., Gong, J. (2017). Structural motifs of water on metal oxide surfaces. Chemical Society Reviews, 46 (7), 1785–1806. doi: https://doi.org/10.1039/c6cs00864j
  10. Etacheri, V., Di Valentin, C., Schneider, J., Bahnemann, D., Pillai, S. C. (2015). Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 25, 1–29. doi: https://doi.org/10.1016/j.jphotochemrev.2015.08.003
  11. Dubey, P. K., Tripathi, P., Tiwari, R. S., Sinha, A. S. K., Srivastava, O. N. (2014). Synthesis of reduced graphene oxide–TiO 2 nanoparticle composite systems and its application in hydrogen production. International Journal of Hydrogen Energy, 39 (29), 16282–16292. doi: https://doi.org/10.1016/j.ijhydene.2014.03.104
  12. Chiu, I., Lin, S.-X., Kao, C.-T., Wu, R.-J. (2014). Promoting hydrogen production by loading PdO and Pt on N–TiO 2 under visible light. International Journal of Hydrogen Energy, 39 (27), 14574–14580. doi: https://doi.org/10.1016/j.ijhydene.2014.07.034
  13. Wang, S., Zhu, B., Liu, M., Zhang, L., Yu, J., Zhou, M. (2019). Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Applied Catalysis B: Environmental, 243, 19–26. doi: https://doi.org/10.1016/j.apcatb.2018.10.019
  14. Wang, P., Li, H., Sheng, Y., Chen, F. (2019). Inhibited photocorrosion and improved photocatalytic H2-evolution activity of CdS photocatalyst by molybdate ions. Applied Surface Science, 463, 27–33. doi: https://doi.org/10.1016/j.apsusc.2018.08.125
  15. Renuka, L., Anantharaju, K. S., Vidya, Y. S., Nagaswarupa, H. P., Prashantha, S. C., Sharma, S. C. et. al. (2017). A simple combustion method for the synthesis of multi-functional ZrO 2 /CuO nanocomposites: Excellent performance as Sunlight photocatalysts and enhanced latent fingerprint detection. Applied Catalysis B: Environmental, 210, 97–115. doi: https://doi.org/10.1016/j.apcatb.2017.03.055
  16. Gao, N., Lu, Z., Zhao, X., Zhu, Z., Wang, Y., Wang, D. et. al. (2016). Enhanced photocatalytic activity of a double conductive C/Fe3O4/Bi2O3 composite photocatalyst based on biomass. Chemical Engineering Journal, 304, 351–361. doi: https://doi.org/10.1016/j.cej.2016.06.063
  17. Carrasco-Jaim, O. A., Torres-Martínez, L. M., Moctezuma, E. (2018). Enhanced photocatalytic hydrogen production of AgMO3 (M = Ta, Nb, V) perovskite materials using CdS and NiO as co-catalysts. Journal of Photochemistry and Photobiology A: Chemistry, 358, 167–176. doi: https://doi.org/10.1016/j.jphotochem.2018.03.021
  18. Ramesh Reddy, N., Bhargav, U., Mamatha Kumari, M., Cheralathan, K. K., Sakar, M. (2020). Review on the interface engineering in the carbonaceous titania for the improved photocatalytic hydrogen production. International Journal of Hydrogen Energy, 45 (13), 7584–7615. doi: https://doi.org/10.1016/j.ijhydene.2019.09.041
  19. Roehrich, B. W., Han, R., Osterloh, F. E. (2020). Hydrogen evolution with fluorescein-sensitized Pt/SrTiO3 nanocrystal photocatalysts is limited by dye adsorption and regeneration. Journal of Photochemistry and Photobiology A: Chemistry, 400, 112705. doi: https://doi.org/10.1016/j.jphotochem.2020.112705
  20. Popugaeva, D., Tian, T., Ray, A. K. (2020). Hydrogen production from aqueous triethanolamine solution using Eosin Y-sensitized ZnO photocatalyst doped with platinum. International Journal of Hydrogen Energy, 45 (19), 11097–11107. doi: https://doi.org/10.1016/j.ijhydene.2020.02.055
  21. Velázquez, J. J., Fernández-González, R., Díaz, L., Pulido Melián, E., Rodríguez, V. D., Núñez, P. (2017). Effect of reaction temperature and sacrificial agent on the photocatalytic H2-production of Pt-TiO2. Journal of Alloys and Compounds, 721, 405–410. doi: https://doi.org/10.1016/j.jallcom.2017.05.314
  22. Li, Z., Qi, Y., Wang, W., Li, D., Li, Z., Xiao, Y. et. al. (2019). Blocking backward reaction on hydrogen evolution cocatalyst in a photosystem II hybrid Z-scheme water splitting system. Chinese Journal of Catalysis, 40 (4), 486–494. doi: https://doi.org/10.1016/s1872-2067(19)63311-5
  23. Wu, F., Liu, W., Qiu, J., Li, J., Zhou, W., Fang, Y. et. al. (2015). Enhanced photocatalytic degradation and adsorption of methylene blue via TiO2 nanocrystals supported on graphene-like bamboo charcoal. Applied Surface Science, 358, 425–435. doi: https://doi.org/10.1016/j.apsusc.2015.08.161
  24. De Cordoba, M. C. F., Matos, J., Montaña, R., Poon, P. S., Lanfredi, S., Praxedes, F. R. et. al. (2019). Sunlight photoactivity of rice husks-derived biogenic silica. Catalysis Today, 328, 125–135. doi: https://doi.org/10.1016/j.cattod.2018.12.008
  25. Baharum, N. A., Nasir, H. M., Ishak, M. Y., Isa, N. M., Hassan, M. A., Aris, A. Z. (2020). Highly efficient removal of diazinon pesticide from aqueous solutions by using coconut shell-modified biochar. Arabian Journal of Chemistry, 13 (7), 6106–6121. doi: https://doi.org/10.1016/j.arabjc.2020.05.011
  26. Li, C.-J., Zhao, R., Peng, M.-Q., Gong, X.-L., Xia, M., Li, K. et. al. (2017). Mechanism study on denitration by new PMS modified bamboo charcoal bifunctional photocatalyst. Chemical Engineering Journal, 316, 544–552. doi: https://doi.org/10.1016/j.cej.2017.01.095
  27. Wang, J., Zhang, X., Li, Z., Ma, Y., Ma, L. (2020). Recent progress of biomass-derived carbon materials for supercapacitors. Journal of Power Sources, 451, 227794. doi: https://doi.org/10.1016/j.jpowsour.2020.227794
  28. Zhu, J., Jia, J., Tjong, S. C. (2014). Preparation, Structure, and Application of Carbon Nanotubes/Bamboo Charcoal Composite. Nanocrystalline Materials, 1–25. doi: https://doi.org/10.1016/b978-0-12-407796-6.00001-4
  29. Pattanayak, S., Loha, C., Hauchhum, L., Sailo, L. (2020). Application of MLP-ANN models for estimating the higher heating value of bamboo biomass. Biomass Conversion and Biorefinery. doi: https://doi.org/10.1007/s13399-020-00685-2
  30. Arend, G. D., Adorno, W. T., Rezzadori, K., Di Luccio, M., Chaves, V. C., Reginatto, F. H., Petrus, J. C. C. (2017). Concentration of phenolic compounds from strawberry (Fragaria X ananassa Duch) juice by nanofiltration membrane. Journal of Food Engineering, 201, 36–41. doi: https://doi.org/10.1016/j.jfoodeng.2017.01.014
  31. Buchweitz, M., Speth, M., Kammerer, D. R., Carle, R. (2013). Stabilisation of strawberry (Fragaria x ananassa Duch.) anthocyanins by different pectins. Food Chemistry, 141 (3), 2998–3006. doi: https://doi.org/10.1016/j.foodchem.2013.04.117
  32. Zani, M., Sala, V., Irde, G., Pietralunga, S. M., Manzoni, C., Cerullo, G. et. al. (2018). Charge dynamics in aluminum oxide thin film studied by ultrafast scanning electron microscopy. Ultramicroscopy, 187, 93–97. doi: https://doi.org/10.1016/j.ultramic.2018.01.010
  33. Tanaka, A., Hashimoto, K., Kominami, H. (2014). Visible-Light-Induced Hydrogen and Oxygen Formation over Pt/Au/WO3 Photocatalyst Utilizing Two Types of Photoabsorption Due to Surface Plasmon Resonance and Band-Gap Excitation. Journal of the American Chemical Society, 136 (2), 586–589. doi: https://doi.org/10.1021/ja410230u
  34. Bao, D., Gao, P., Zhu, X., Sun, S., Wang, Y., Li, X. et. al. (2015). ZnO/ZnS Heterostructured Nanorod Arrays and Their Efficient Photocatalytic Hydrogen Evolution. Chemistry - A European Journal, 21 (36), 12728–12734. doi: https://doi.org/10.1002/chem.201501595
  35. Speltini, A., Sturini, M., Dondi, D., Annovazzi, E., Maraschi, F., Caratto, V. et. al. (2014). Sunlight-promoted photocatalytic hydrogen gas evolution from water-suspended cellulose: a systematic study. Photochemical & Photobiological Sciences, 13 (10), 1410–1419. doi: https://doi.org/10.1039/c4pp00128a
  36. Jia, L., Li, J., Fang, W. (2010). Effect of H2/CO2 mixture gas treatment temperature on the activity of LaNiO3 catalyst for hydrogen production from formaldehyde aqueous solution under visible light. Journal of Alloys and Compounds, 489 (2), L13–L16. doi: https://doi.org/10.1016/j.jallcom.2009.09.104
  37. Speltini, A., Sturini, M., Maraschi, F., Dondi, D., Fisogni, G., Annovazzi, E. et. al. (2015). Evaluation of UV-A and solar light photocatalytic hydrogen gas evolution from olive mill wastewater. International Journal of Hydrogen Energy, 40 (12), 4303–4310. doi: https://doi.org/10.1016/j.ijhydene.2015.01.182
  38. Sofi’i, Y. K., Siswanto, E., Winarto, Ueda, T., Wardana, I. N. G. (2020). The role of activated carbon in boosting the activity of clitoria ternatea powder photocatalyst for hydrogen production. International Journal of Hydrogen Energy, 45 (43), 22613–22628. doi: https://doi.org/10.1016/j.ijhydene.2020.05.103

##submission.downloads##

Опубліковано

2020-12-31

Як цитувати

Sofi’i, Y. K., Siswanto, E., Winarto, W., & Wardana, I. N. G. (2020). Розробка фотокаталізаторів на основі бамбукового вугілля і порошку лісової суниці для отримання водню методом розщеплення води. Eastern-European Journal of Enterprise Technologies, 6(6 (108), 80–92. https://doi.org/10.15587/1729-4061.2020.213277

Номер

Розділ

Технології органічних та неорганічних речовин