Розробка методу виявлення небезпечних станів забрудненого атмосферного повітря на основі поточної рекурентності комбінованого ризику
DOI:
https://doi.org/10.15587/1729-4061.2020.213892Ключові слова:
небезпечні забруднення атмосферного повітря, контрольна точка, поточні концентрації забруднювачів, комбінований ризик, рекурентна діаграмаАнотація
Розроблено метод виявлення небезпечних станів забрудненого атмосферного повітря урбанізованих територій в реальному часі для довільного числа забруднювачів. Метод базується на відновленні прихованої динаміки рівня комбінованого ризику миттєвої дії за поточними вимірам концентрації забруднювачів в точці контролю. Інші дані про поточні умови в точці контролю в розробленому методі не використовуються. Тому метод на відміну від відомих аналогів є універсальним і може застосовуватися для довільних умов і точок контролю. При цьому відновлювана динаміка рівня комбінованого ризику миттєвої дії дозволяє не тільки виявляти небезпечні стани забрудненого атмосферного повітря, але і на основі поточної рекурентності рівнів комбінованого ризику оцінювати вірогідність виявлення і прогнозування небезпечних рівнів комбінованого ризику миттєвої дії в реальному часі в заданій точці контролю. Застосування розробленого методу в декількох точках контролю на довільній території дозволить визначати просторово-часові розподіли рівнів комбінованого ризику миттєвої дії атмосферних забруднень на населення території. Виконано експериментальні вимірювання концентрації формальдегіду, аміаку і двоокису азоту в атмосферному повітрі в точці контролю на території промислового міста з рівнем забруднення атмосфери, що характеризується 37 одиницями за шкалою AQI (США). На основі отриманих вимірів підтверджена працездатність методу. Встановлено, що в момент достовірно небезпечної події рівень комбінованого ризику миттєвої дії склав приблизно 10-3 при одиничній ймовірності цього рівня. Даний рівень комбінованого ризику приблизно в 105 разів перевищує рівень відповідної верхньої межі допустимого індивідуального ризику. Показано, що для розглянутих умов максимальний час прогнозу небезпечного рівня комбінованого ризику не перевищує 18 годинПосилання
- Egondi, T., Kyobutungi, C., Ng, N., Muindi, K., Oti, S., Vijver, S. et. al (2013). Community Perceptions of Air Pollution and Related Health Risks in Nairobi Slums. International Journal of Environmental Research and Public Health, 10(10), 4851–4868. doi: https://doi.org/10.3390/ijerph10104851
- Argyropoulos, C. D., Ashraf, A. M., Markatos, N. C., Kakosimos, K. E. (2017). Mathematical modelling and computer simulation of toxic gas building infiltration. Process Safety and Environmental Protection, 111, 687–700. doi: https://doi.org/10.1016/j.psep.2017.08.038
- Sorek-Hamer, M., Chatfield, R., Liu, Y. (2020). Review: Strategies for using satellite-based products in modeling PM2.5 and short-term pollution episodes. Environment International, 144, 106057. doi: https://doi.org/10.1016/j.envint.2020.106057
- Zou, B., Wilson, J. G., Zhan, F. B., Zeng, Y. (2009). Air pollution exposure assessment methods utilized in epidemiological studies. Journal of Environmental Monitoring, 11 (3), 475. doi: https://doi.org/10.1039/b813889c
- Beckx, C., Int Panis, L., Arentze, T., Janssens, D., Torfs, R., Broekx, S., Wets, G. (2009). A dynamic activity-based population modelling approach to evaluate exposure to air pollution: Methods and application to a Dutch urban area. Environmental Impact Assessment Review, 29 (3), 179–185. doi: https://doi.org/10.1016/j.eiar.2008.10.001
- Bell, M. L., Ebisu, K., Belanger, K. (2007). Ambient Air Pollution and Low Birth Weight in Connecticut and Massachusetts. Environmental Health Perspectives, 115 (7), 1118–1124. doi: https://doi.org/10.1289/ehp.9759
- Ballester, F. (2002). The EMECAM project: a multicentre study on air pollution and mortality in Spain: combined results for particulates and for sulfur dioxide. Occupational and Environmental Medicine, 59 (5), 300–308. doi: https://doi.org/10.1136/oem.59.5.300
- Kustov, M. V., Kalugin, V. D., Tutunik, V. V., Tarakhno, E. V. (2019). Physicochemical principles of the technology of modified pyrotechnic compositions to reduce the chemical pollution of the atmosphere. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 92–99. doi: https://doi.org/10.32434/0321-4095-2019-122-1-92-99
- Pascual, M., Ellner, S. P. (2000). Linking ecological patterns to environmental forcing via nonlinear time series models. Ecology, 81 (10), 2767–2780. doi: https://doi.org/10.1890/0012-9658(2000)081[2767:leptef]2.0.co;2
- Parrott, L. (2004). Analysis of simulated long-term ecosystem dynamics using visual recurrence analysis. Ecological Complexity, 1 (2), 111–125. doi: https://doi.org/10.1016/j.ecocom.2004.01.002
- Proulx, R. (2007). Ecological complexity for unifying ecological theory across scales: A field ecologist's perspective. Ecological Complexity, 4 (3), 85–92. doi: https://doi.org/10.1016/j.ecocom.2007.03.003
- Eckmann, J.-P., Kamphorst, S. O., Ruelle, D. (1987). Recurrence Plots of Dynamical Systems. Europhysics Letters (EPL), 4 (9), 973–977. doi: https://doi.org/10.1209/0295-5075/4/9/004
- Webber, Jr. C. L., Zbilut, J. P. (2005). Recurrence quantification analysis of nonlinear dynamical systems. Tutorials in contemporary nonlinear methods for the behavioral sciences, 26.
- Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Borodych, P. (2018). Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises. Eastern-European Journal of Enterprise Technologies, 3 (9 (93)), 34–40. doi: https://doi.org/10.15587/1729-4061.2018.133127
- Turcotte, D. L. (1977). Fractals and chaos in geology and geophysics. Cambridge University Press. doi: https://doi.org/10.1017/cbo9781139174695
- Pospelov, B., Rybka, E., Meleshchenko, R., Borodych, P., Gornostal, S. (2019). Development of the method for rapid detection of hazardous atmospheric pollution of cities with the help of recurrence measures. Eastern-European Journal of Enterprise Technologies, 1 (10 (97)), 29–35. doi: https://doi.org/10.15587/1729-4061.2019.155027
- Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Karpets, K., Pirohov, O. et. al. (2019). Development of the correlation method for operative detection of recurrent states. Eastern-European Journal of Enterprise Technologies, 6 (4 (102)), 39–46. doi: https://doi.org/10.15587/1729-4061.2019.187252
- Pospelov, B., Rybka, E., Togobytska, V., Meleshchenko, R., Danchenko, Y., Butenko, T. et. al. (2019). Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots. Eastern-European Journal of Enterprise Technologies, 4 (10 (100)), 22–29. doi: https://doi.org/10.15587/1729-4061.2019.176579
- Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Harbuz, S., Bezuhla, Y. et. al. (2020). Use of uncertainty function for identification of hazardous states of atmospheric pollution vector. Eastern-European Journal of Enterprise Technologies, 2 (10 (104)), 6–12. doi: https://doi.org/10.15587/1729-4061.2020.200140
- Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Maksymenko, N., Meleshchenko, R. et. al. (2020). Mathematical model of determining a risk to the human health along with the detection of hazardous states of urban atmosphere pollution based on measuring the current concentrations of pollutants. Eastern-European Journal of Enterprise Technologies, 4 (10 (106)), 37–44. doi: https://doi.org/10.15587/1729-4061.2020.210059
- Ferrante, M., Fiore, M., Copat, C., Morina, S., Ledda, C., Mauceri, C., & Oliveri Conti, G. (2015). Air Pollution in High-Risk Sites–Risk Analysis and Health Impact. Current Air Quality Issues. doi: https://doi.org/10.5772/60345
- Naydenko, V. V., Gubanov, L. N., Kosarikov, A. N., Afanas'eva, I. M., Ivanov, A. V. (2003). Ekologo-ekonomicheskiy monitoring okruzhayushchey sredy. Nizhniy Novgorod, 186.
- Leonovich, E. I., Skorobogataya, I. V. (2019). Otsenka riska dlya zhizni i zdorov'ya naseleniya ot vozdeystviya zagryaznyayushchih veshchestv v atmosfernom vozduhe. Gigienicheskie pokazateli urovnya zagryazneniya atmosfery. Minsk, 48.
- Poulsen, A., Jomaas, G. (2011). Experimental Study on the Burning Behavior of Pool Fires in Rooms with Different Wall Linings. Fire Technology, 48 (2), 419–439. doi: https://doi.org/10.1007/s10694-011-0230-0
- Pospelov, B., Meleshchenko, R., Krainiukov, O., Karpets, K., Petukhova, O., Bezuhla, Y. et. al. (2020). A method for preventing the emergency resulting from fires in the premises through operative control over a gas medium. Eastern-European Journal of Enterprise Technologies, 1 (10 (103)), 6–13. doi: https://doi.org/10.15587/1729-4061.2020.194009
- Kondratenko, O. M., Vambol, S. O., Strokov, O. P., Avramenko, A. M. (2015). Mathematical model of the efficiency of diesel particulate matter filter. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 55–61.
- Semko, A. N., Beskrovnaya, M. V., Vinogradov, S. A., Hritsina, I. N., Yagudina, N. I. (2014). The usage of high speed impulse liquid jets for putting out gas blowouts. Journal of Theoretical and Applied Mechanics, 52 (3), 655–664.
- Otrosh, Y., Semkiv, O., Rybka, E., Kovalov, A. (2019). About need of calculations for the steel framework building in temperature influences conditions. IOP Conference Series: Materials Science and Engineering, 708, 012065. doi: https://doi.org/10.1088/1757-899x/708/1/012065
- Vambol, S., Vambol, V., Kondratenko, O., Koloskov, V., Suchikova, Y. (2018). Substantiation of expedience of application of high-temperature utilization of used tires for liquefied methane production. Journal of Achievements in Materials and Manufacturing Engineering, 2 (87), 77–84. doi: https://doi.org/10.5604/01.3001.0012.2830
- Loboichenko, V. M., Vasyukov, A. E., Tishakova, T. S. (2017). Investigations of Mineralization of Water Bodies on the Example of River Waters of Ukraine. Asian Journal of Water, Environment and Pollution, 14 (4), 37–41. doi: https://doi.org/10.3233/ajw-170035
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2020 Boris Pospelov, Volodymyr Kovrehin, Evgeniy Rybka, Olekcii Krainiukov, Olena Petukhova, Tetiana Butenko, Pavlo Borodych, Ihor Morozov, Oleksii Horbov, Inna Hrachova
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.