Розробка методу виявлення довільних небезпечних забруднень атмосферного повітря на основі структурної функції поточних концентрацій забруднювачів
DOI:
https://doi.org/10.15587/1729-4061.2020.218714Ключові слова:
забруднення атмосферного повітря, структурна функція, виявлення забруднень, масштаб неоднорідності забрудненьАнотація
Розроблено метод обчислення структурної функції в рухомому вікні фіксованого розміру, заснований на вимірах вектора поточних концентрацій довільних забруднювачів атмосферного повітря. Використання рухомого вікна дозволяє виявляти поточні моменти появи неоднорідностей забрудненої атмосфери. При цьому часовий здвиг структурної функції виявляє відповідний тимчасової масштаб цієї неоднорідності. Показано, що, на відміну від відомого методу, запропонований метод дозволяє виявляти динаміку рівнів та масштабів локальних неоднорідностей забрудненого атмосферного повітря, використовуючи тільки поточні вимірювання концентрації для довільного числа забруднювачів. Відзначається, що метод не використовує інформацію про поточні метеорологічні стани атмосфери і особливості забудови поблизу точки контролю забруднень. Тому метод є універсальним і може застосовуватися для довільних точок контролю атмосферних забруднень на різних територіях держав. Працездатність запропонованого методу перевірялася на прикладі реальних вимірів концентрацій забруднювачів міського атмосфери формальдегідом, аміаком і двоокисом азоту. Отримані результати в цілому свідчать про працездатність запропонованого методу. Експериментально встановлено, що метод дозволяє виявляти в реальному часі області локальних неоднорідностей, характерних для небезпечних забруднень атмосферного повітря, пов'язаних з відсутністю розсіювання і накопиченням забруднювачів в повітрі. Крім цього, метод дозволяє виявляти в реальному часі як рівні, так і масштаби неоднорідностей забрудненої атмосфери. Експериментально встановлено, що перед появою тестованої достовірної надзвичайної події в забрудненій атмосфері рівень локальної неоднорідності становив 0,015 од. при її тимчасовому масштабі, відповідному 8 відлікам. Потім до моменту надзвичайної події рівень неоднорідності знизився і склав 0,0025 од. при тимчасовому масштабі, відповідному 2 відлікам. Експериментально встановлено, що для цього випадку час прогнозу появи надзвичайної події склав 4 відліки або одну добуПосилання
- Egondi, T., Kyobutungi, C., Ng, N., Muindi, K., Oti, S., Vijver, S. et. al. (2013). Community Perceptions of Air Pollution and Related Health Risks in Nairobi Slums. International Journal of Environmental Research and Public Health, 10(10), 4851–4868. doi: https://doi.org/10.3390/ijerph10104851
- Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Maksymenko, N., Meleshchenko, R. et. al. (2020). Mathematical model of determining a risk to the human health along with the detection of hazardous states of urban atmosphere pollution based on measuring the current concentrations of pollutants. Eastern-European Journal of Enterprise Technologies, 4 (10 (106)), 37–44. doi: https://doi.org/10.15587/1729-4061.2020.210059
- McCarron, G. (2018). Air Pollution and human health hazards: a compilation of air toxins acknowledged by the gas industry in Queensland’s Darling Downs. International Journal of Environmental Studies, 75 (1), 171–185. doi: https://doi.org/10.1080/00207233.2017.1413221
- Ten threats to global health in 2019. World Health Organization.
- Social Costs of Morbidity Impacts of Air Pollution (2016). OECD Environment Working Papers. doi: https://doi.org/10.1787/5jm55j7cq0lv-en
- Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope, C. A. et. al. (2018). Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proceedings of the National Academy of Sciences, 115 (38), 9592–9597. doi: https://doi.org/10.1073/pnas.1803222115
- Kemp, A. C., Horton, B. P., Donnelly, J. P., Mann, M. E., Vermeer, M., Rahmstorf, S. (2011). Climate related sea-level variations over the past two millennia. Proceedings of the National Academy of Sciences, 108 (27), 11017–11022. doi: https://doi.org/10.1073/pnas.1015619108
- Pope, C. A., Cropper, M., Coggins, J., Cohen, A. (2014). Health benefits of air pollution abatement policy: Role of the shape of the concentration–response function. Journal of the Air & Waste Management Association, 65 (5), 516–522. doi: https://doi.org/10.1080/10962247.2014.993004
- Xie, Y., Bowe, B., Yan, Y., Xian, H., Li, T., Al-Aly, Z. (2019). Estimates of all cause mortality and cause specific mortality associated with proton pump inhibitors among US veterans: cohort study. BMJ, l1580. doi: https://doi.org/10.1136/bmj.l1580
- Bowe, B., Xie, Y., Xian, H., Balasubramanian, S., Zayed, M. A., Al-Aly, Z. (2016). High Density Lipoprotein Cholesterol and the Risk of All-Cause Mortality among U.S. Veterans. Clinical Journal of the American Society of Nephrology, 11 (10), 1784–1793. doi: https://doi.org/10.2215/cjn.00730116
- About Underlying Cause of Death, 1999-2018. Available at: https://wonder.cdc.gov/ucd-icd10.html
- Vitolo, C., Scutari, M., Ghalaieny, M., Tucker, A., Russell, A. (2018). Modeling Air Pollution, Climate, and Health Data Using Bayesian Networks: A Case Study of the English Regions. Earth and Space Science, 5 (4), 76–88. doi: https://doi.org/10.1002/2017ea000326
- Bai, L., Wang, J., Ma, X., Lu, H. (2018). Air Pollution Forecasts: An Overview. International Journal of Environmental Research and Public Health, 15 (4), 780. doi: https://doi.org/10.3390/ijerph15040780
- Tong, Y., Wan, B. (2001). Methods of forecasting air pollution and their development at home and abroad. Proceedings of the Sixth National Academic Conference on Environmental Monitoring.
- Rahman, N. H. A., Lee, M. H., Suhartono, Latif, M. T. (2014). Artificial neural networks and fuzzy time series forecasting: an application to air quality. Quality & Quantity, 49 (6), 2633–2647. doi: https://doi.org/10.1007/s11135-014-0132-6
- Luo, X., Cao, H. (2012). Evaluation of air quality using the CMAQ modeling system. Procedia Environmental Sciences, 12, 159–165. doi: https://doi.org/10.1016/j.proenv.2012.01.261
- Sharma, N., Agarwal, A. K., Eastwood, P., Gupta, T., Singh, A. P. (2017). Introduction to Air Pollution and Its Control. Air Pollution and Control, 3–7. doi: https://doi.org/10.1007/978-981-10-7185-0_1
- Marwan, N. (2011). How to avoid potential pitfalls in recurrence plot based data analysis. International Journal of Bifurcation and Chaos, 21 (04), 1003–1017. doi: https://doi.org/10.1142/s0218127411029008
- Marwan, N., Webber, C. L., Macau, E. E. N., Viana, R. L. (2018). Introduction to focus issue: Recurrence quantification analysis for understanding complex systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28 (8), 085601. doi: https://doi.org/10.1063/1.5050929
- Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Gornostal, S. (2018). Analysis of correlation dimensionality of the state of a gas medium at early ignition of materials. Eastern-European Journal of Enterprise Technologies, 5 (10 (95)), 25–30. doi: https://doi.org/10.15587/1729-4061.2018.142995
- Pospelov, B., Rybka, E., Meleshchenko, R., Borodych, P., Gornostal, S. (2019). Development of the method for rapid detection of hazardous atmospheric pollution of cities with the help of recurrence measures. Eastern-European Journal of Enterprise Technologies, 1 (10 (97)), 29–35. doi: https://doi.org/10.15587/1729-4061.2019.155027
- Adeniji, A. E., Olusola, O. I., Njah, A. N. (2018). Comparative study of chaotic features in hourly wind speed using recurrence quantification analysis. AIP Advances, 8 (2), 025102. doi: https://doi.org/10.1063/1.4998674
- Wendi, D., Marwan, N., Merz, B. (2018). In Search of Determinism-Sensitive Region to Avoid Artefacts in Recurrence Plots. International Journal of Bifurcation and Chaos, 28 (01), 1850007. doi: https://doi.org/10.1142/s0218127418500074
- Donner, R. V., Balasis, G., Stolbova, V., Georgiou, M., Wiedermann, M., Kurths, J. (2019). Recurrence‐Based Quantification of Dynamical Complexity in the Earth's Magnetosphere at Geospace Storm Timescales. Journal of Geophysical Research: Space Physics, 124 (1), 90–108. doi: https://doi.org/10.1029/2018ja025318
- Garcia-Ceja, E., Uddin, M. Z., Torresen, J. (2018). Classification of Recurrence Plots’ Distance Matrices with a Convolutional Neural Network for Activity Recognition. Procedia Computer Science, 130, 157–163. doi: https://doi.org/10.1016/j.procs.2018.04.025
- Neves, F. M., Viana, R. L., Pie, M. R. (2017). Recurrence analysis of ant activity patterns. PLOS ONE, 12 (10), e0185968. doi: https://doi.org/10.1371/journal.pone.0185968
- Ozken, I., Eroglu, D., Breitenbach, S. F. M., Marwan, N., Tan, L., Tirnakli, U., Kurths, J. (2018). Recurrence plot analysis of irregularly sampled data. Physical Review E, 98 (5). doi: https://doi.org/10.1103/physreve.98.052215
- Thiel, M., Romano, M. C., Kurths, J., Meucci, R., Allaria, E., Arecchi, F. T. (2002). Influence of observational noise on the recurrence quantification analysis. Physica D: Nonlinear Phenomena, 171 (3), 138–152. doi: https://doi.org/10.1016/s0167-2789(02)00586-9
- Schinkel, S., Dimigen, O., Marwan, N. (2008). Selection of recurrence threshold for signal detection. The European Physical Journal Special Topics, 164 (1), 45–53. doi: https://doi.org/10.1140/epjst/e2008-00833-5
- Eroglu, D., Marwan, N., Stebich, M., Kurths, J. (2018). Multiplex recurrence networks. Physical Review E, 97 (1). doi: https://doi.org/10.1103/physreve.97.012312
- Webber,, C. L., Ioana, C., Marwan, N. (Eds.) (2016). Recurrence Plots and Their Quantifications: Expanding Horizons. Springer Proceedings in Physics. doi: https://doi.org/10.1007/978-3-319-29922-8
- Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Borodych, P. (2018). Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises. Eastern-European Journal of Enterprise Technologies, 3 (9 (93)), 34–40. doi: https://doi.org/10.15587/1729-4061.2018.133127
- Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Design of fire detectors capable of self-adjusting by ignition. Eastern-European Journal of Enterprise Technologies, 4 (9 (88)), 53–59. doi: https://doi.org/10.15587/1729-4061.2017.108448
- Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Research into dynamics of setting the threshold and a probability of ignition detection by selfadjusting fire detectors. Eastern-European Journal of Enterprise Technologies, 5 (9 (89)), 43–48. doi: https://doi.org/10.15587/1729-4061.2017.110092
- Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Karpets, K., Pirohov, O. et. al. (2019). Development of the correlation method for operative detection of recurrent states. Eastern-European Journal of Enterprise Technologies, 6 (4 (102)), 39–46. doi: https://doi.org/10.15587/1729-4061.2019.187252
- Pospelov, B., Andronov, V., Rybka, E., Popov, V., Romin, A. (2018). Experimental study of the fluctuations of gas medium parameters as early signs of fire. Eastern-European Journal of Enterprise Technologies, 1 (10 (91)), 50–55. doi: https://doi.org/10.15587/1729-4061.2018.122419
- Stankovic, L., Dakovic, M., Thayaparan, T. (2014). Time-frequency signal analysis. Kindle edition, 655.
- Avargel, Y., Cohen, I. (2010). Modeling and Identification of Nonlinear Systems in the Short-Time Fourier Transform Domain. IEEE Transactions on Signal Processing, 58 (1), 291–304. doi: https://doi.org/10.1109/tsp.2009.2028978
- Giv, H. H. (2013). Directional short-time Fourier transform. Journal of Mathematical Analysis and Applications, 399 (1), 100–107. doi: https://doi.org/10.1016/j.jmaa.2012.09.053
- Pospelov, B., Andronov, V., Rybka, E., Popov, V., Semkiv, O. (2018). Development of the method of frequencytemporal representation of fluctuations of gaseous medium parameters at fire. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 44–49. doi: https://doi.org/10.15587/1729-4061.2018.125926
- Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Harbuz, S., Bezuhla, Y. et. al. (2020). Use of uncertainty function for identification of hazardous states of atmospheric pollution vector. Eastern-European Journal of Enterprise Technologies, 2 (10 (104)), 6–12. doi: https://doi.org/10.15587/1729-4061.2020.200140
- Pospelov, B., Kovrehin, V., Rybka, E., Krainiukov, O., Petukhova, O., Butenko, T. et. al. (2020). Development of a method for detecting dangerous states of polluted atmospheric air based on the current recurrence of the combined risk. Eastern-European Journal of Enterprise Technologies, 5 (9 (107)), 49–56. doi: https://doi.org/10.15587/1729-4061.2020.213892
- Kaladze, V. A. (2012). Mathematical models of casual processes with stationary increments and the non-uniform information dynamic processing. Lorman, 136.
- Tatarskiy, V. I. (1967). Rasprostranenie voln v turbulentnoy atmosfere. Moscow: Nauka.
- Prohorov, S. A., Grafkin, V. V. (2010). Strukturno-spektral'niy analiz sluchaynyh protsessov. Samara: SNTS RAN, 128.
- Kondratenko, O. M., Vambol, S. O., Strokov, O. P., Avramenko, A. M. (2015). Mathematical model of the efficiency of diesel particulate matter filter. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 55–61.
- Otrosh, Y., Semkiv, O., Rybka, E., Kovalov, A. (2019). About need of calculations for the steel framework building in temperature influences conditions. IOP Conference Series: Materials Science and Engineering, 708, 012065. doi: https://doi.org/10.1088/1757-899x/708/1/012065
- Semko, A. N., Beskrovnaya, M. V., Yagudina, N. I., Vinogradov, S. A., Hritsina, I. N. (2014). The usage of high speed impulse liquid jets for putting out gas blowouts. Journal of Theoretical and Applied Mechanics, 52 (3), 655–664.
- Kustov, M. V., Kalugin, V. D., Tutunik, V. V., Tarakhno, E. V. (2019). Physicochemical principles of the technology of modified pyrotechnic compositions to reduce the chemical pollution of the atmosphere. Voprosy khimii i khimicheskoi tekhnologii, 1, 92–99. doi: https://doi.org/10.32434/0321-4095-2019-122-1-92-99
- Loboichenko, V. M., Vasyukov, A. E., Tishakova, T. S. (2017). Investigations of Mineralization of Water Bodies on the Example of River Waters of Ukraine. Asian Journal of Water, Environment and Pollution, 14 (4), 37–41. doi: https://doi.org/10.3233/ajw-170035
- Pospelov, B., Rybka, E., Togobytska, V., Meleshchenko, R., Danchenko, Y., Butenko, T. et. al. (2019). Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots. Eastern-European Journal of Enterprise Technologies, 4 (10 (100)), 22–29. doi: https://doi.org/10.15587/1729-4061.2019.176579
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2020 Volodymyr Sadkovyi, Boris Pospelov, Vladimir Andronov, Evgenіy Rybka, Olekcii Krainiukov, Anatoliy Rud, Kostiantyn Karpets, Yuliia Bezuhla
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.