Розробка методу моделювання розповсюдження затримок поїздів в залізничних мережах за допомогою епідеміологічних SIR-моделей
DOI:
https://doi.org/10.15587/1729-4061.2020.219285Ключові слова:
залізниця, мережа, графік руху поїздів, поширення затримки, епідеміологічна модель, SIRАнотація
Розроблено метод моделювання розповсюдження затримок поїздів на розгалужених залізничних полігонах за допомогою модифікованих епідеміологічних SIR-моделей. Дані моделі враховують взаємовплив поїздів з різним пріоритетом в потоці. Це дозволяє врахувати гетерогенну динаміку при поширенні затримок між поїздопотоками різної пріоритетності. Для врахування поширення первинної затримки у просторі і часі запропоновано представити топологію залізничної мережі у вигляді неорієнтованого графу з прив’язкою до ребра графу математичної системи диференційних рівнянь SIR-моделі. Це дозволило уніфікувати процес побудови SIR-моделей для кожного ребра (дільниці) графу мережі та зменшити розмірність задачі. Для обліку впливу “мережевого ефекту” запропоновано визначати транзитний коефіцієнт за кожною станцією дільниці. Даний коефіцієнт дозволяє вирахувати кількість затриманих поїздів на суміжні дільниці. Для настроювання SIR-моделей запропоновано використати емпіричні дані щодо розповсюдження середньої затримки в нормативному графіку руху на відповідній дільниці. Для послідовного розв’язку SIR-моделей, що відповідають взаємопов’язаним дільницям мережі, застосовано алгоритм, який перетворює граф мережі на спрямоване дерево, коренем якого є станція виникнення затримки. Проведені дослідження моделювання поширення затримок поїздів на залізничному полігоні з врахуванням взаємовпливу різних категорій поїздів в потоці та закладених резервів часу на відновлення руху. Отримані результати моделювання підтвердили адекватність рішень та дозволяють кількісно оцінити вплив первинних затримок та величин резерву часу в розкладах руху поїздів різних категорій на надійність нормативного графіка руху поїздівПосилання
- Kariyazaki, K., Hibino, N., Morichi, S. (2013). Simulation Analysis of Train Operation to Recover Knock-on Delay under High-Frequency. 13th World Conference on Transpolrt Research. Rio de Janeiro. Available at: http://www.wctrs-society.com/wp-content/uploads/abstracts/rio/selected/1603.pdf
- Müller-Hannemann, M., Schnee, M. (2009). Efficient Timetable Information in the Presence of Delays. Lecture Notes in Computer Science, 249–272. doi: https://doi.org/10.1007/978-3-642-05465-5_10
- Goverde, R. M. P. (2010). A delay propagation algorithm for large-scale railway traffic networks. Transportation Research Part C: Emerging Technologies, 18 (3), 269–287. doi: https://doi.org/10.1016/j.trc.2010.01.002
- Matsiuk, V., Myronenko, V., Horoshko, V., Prokhorchenko, A., Hrushevska, T., Shcherbyna, R. et. al. (2019). Improvement of efficiency in the organization of transfer trains at developed railway nodes by implementing a “flexible model.” Eastern-European Journal of Enterprise Technologies, 2 (3 (98)), 32–39. doi: https://doi.org/10.15587/1729-4061.2019.162143
- Butko, T., Prokhorchenko, A., Golovko, T., Prokhorchenko, G. (2018). Development of the method for modeling the propagation of delays in noncyclic train scheduling on the railroads with mixed traffic. Eastern-European Journal of Enterprise Technologies, 1 (3 (91)), 30–39. doi: https://doi.org/10.15587/1729-4061.2018.123141
- Meester, L. E., Muns, S. (2007). Stochastic delay propagation in railway networks and phase-type distributions. Transportation Research Part B: Methodological, 41 (2), 218–230. doi: https://doi.org/10.1016/j.trb.2006.02.007
- Berger, A., Gebhardt, A., Müller-Hannemann, M., Ostrowski, M. (2011). Stochastic delay prediction in large train networks. 11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, 100–111. doi: https://doi.org/10.4230/OASIcs.ATMOS.2011.100
- Yuan, J., Hansen, I. A. (2007). Optimizing capacity utilization of stations by estimating knock-on train delays. Transportation Research Part B: Methodological, 41 (2), 202–217. doi: https://doi.org/10.1016/j.trb.2006.02.004
- Barta, J., Rizzoli, A. E., Salani, M., Gambardella, L. M. (2012). Statistical modelling of delays in a rail freight transportation network. Proceedings of the 2012 Winter Simulation Conference (WSC). doi: https://doi.org/10.1109/wsc.2012.6465188
- Rößler, D., Reisch, J., Kliewer, N. (2019). Modeling Delay Propagation and Transmission in Railway Networks. 14th International Conference on Wirtschaftsinformatik.
- Wang, P., Zhang, Q. (2019). Train delay analysis and prediction based on big data fusion. Transportation Safety and Environment, 1 (1), 79–88. doi: https://doi.org/10.1093/tse/tdy001
- Graffagnino, T. (2012). Ensuring timetable stability with train traffic data. Computers in Railways XIII. doi: https://doi.org/10.2495/cr120361
- Gorman, M. F. (2009). Statistical estimation of railroad congestion delay. Transportation Research Part E: Logistics and Transportation Review, 45 (3), 446–456. doi: https://doi.org/10.1016/j.tre.2008.08.004
- Wen, C., Huang, P., Li, Z., Lessan, J., Fu, L., Jiang, C., Xu, X. (2019). Train Dispatching Management With Data- Driven Approaches: A Comprehensive Review and Appraisal. IEEE Access, 7, 114547–114571. doi: https://doi.org/10.1109/access.2019.2935106
- Landex, A. (2012). Network effects in railways. Computers in Railways XIII. doi: https://doi.org/10.2495/cr120331
- Pagani, A., Mosquera, G., Alturki, A., Johnson, S., Jarvis, S., Wilson, A. et. al. (2019). Resilience or robustness: identifying topological vulnerabilities in rail networks. Royal Society Open Science, 6 (2), 181301. doi: https://doi.org/10.1098/rsos.181301
- Monechi, B., Gravino, P., Di Clemente, R., Servedio, V. D. P. (2018). Complex delay dynamics on railway networks from universal laws to realistic modelling. EPJ Data Science, 7 (1). doi: https://doi.org/10.1140/epjds/s13688-018-0160-x
- Baspinar, B., Koyuncu, E. (2016). A Data-Driven Air Transportation Delay Propagation Model Using Epidemic Process Models. International Journal of Aerospace Engineering, 2016, 1–11. doi: https://doi.org/10.1155/2016/4836260
- Dai, X., Hu, M., Tian, W., Xie, D., Hu, B. (2016). Application of Epidemiology Model on Complex Networks in Propagation Dynamics of Airspace Congestion. PLOS ONE, 11 (6), e0157945. doi: https://doi.org/10.1371/journal.pone.0157945
- Manitz, J., Harbering, J., Schmidt, M., Kneib, T., Schobel, A. (2014). Network-based Source Detection: From Infectious Disease Spreading to Train Delay Propagation. Proceedings of the 29th International Workshop on Statistical Modelling, 201–205.
- Frankhuizen, K., Li, Y., Liu, H. (2017). Cascading Behavior of delay in Dutch Train Transportation: Network patterns and a model. Available at: https://www.semanticscholar.org/paper/Cascading-Behavior-of-delay-in-Dutch-Train-%3A-and-a-Frankhuizen-Li/3a31366023f6626c5df52e6157aebddee8c54398
- Zeng, Z., Li, T. (2018). Analyzing Congestion Propagation on Urban Rail Transit Oversaturated Conditions: A Framework Based on SIR Epidemic Model. Urban Rail Transit, 4 (3), 130–140. doi: https://doi.org/10.1007/s40864-018-0084-6
- Instruktsiya zi skladannia hrafika rukhu poizdiv na zaliznytsiakh Ukrainy (zatv. Ukrzaliznytsia 05.04.2002). Transport Ukrainy.
- Instruktsiya z rozrakhunku naiavnoi propusknoi spromozhnosti zaliznyts Ukrainy (zatv. Ukrzaliznytsia 14.03.2001 r. No. 143/Ts). Transport Ukrainy.
- Kermack, W. O., McKendrick, A. G. (1927). Contributions to the mathematical theory of epidemics-I. Proc. Roy. Soc. London Ser. A, 115, 700–721.
- Rushton, S., Mautner, A. J. (1955). The deterministic model of a simple epidemic for more than one community. Biometrika, 42 (1-2), 126–136. doi: https://doi.org/10.1093/biomet/42.1-2.126
- Ball, F. (1985). Deterministic and stochastic epidemics with several kinds of susceptibles. Advances in Applied Probability, 17 (1), 1–22. doi: https://doi.org/10.2307/1427049
- Pravyla tekhnichnoi ekspluatatsiyi zaliznyts Ukrainy (zatv. nakazom Ministerstva transportu Ukrainy vid 20.12.96 N 411, zareiestrovani u Miniusti 25.02.97 za No. 50/1854 (zi zminamy ta dopovnenniamy). Transport Ukrainy.
- Watson, R. K. (1972). On an epidemic in a stratified population. Journal of Applied Probability, 9 (3), 659–666. doi: https://doi.org/10.2307/3212334
- Valiente, G. (2002). Algorithms on Trees and Graphs. Springer-Verlag Berlin Heidelberg. doi: https://doi.org/10.1007/978-3-662-04921-1
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2020 Dmytro Gurin, Andrii Prokhorchenko, Mykhailo Kravchenko, Ganna Shapoval
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.