Вдосконалення безперервної технології електрохімічного отримання гідроксиду нікеля шляхом введення рециклінгу розчину

Автор(и)

  • Вадим Леонідович Коваленко Український державний хіміко-технологічний університет; В’ятський державний університетв, Україна https://orcid.org/0000-0002-8012-6732
  • Валерій Анатолійович Коток Український державний хіміко-технологічний університет; В’ятський державний університет, Україна https://orcid.org/0000-0001-8879-7189

DOI:

https://doi.org/10.15587/1729-4061.2021.224223

Анотація

Гідроксид нікелю широко використовується в суперконденсаторах, лужних акумуляторах, для електрокаталитичного окиснення органічних забруднень і т.д. Найбільш перспективними через електрохімічну активність є зразки Ni(OH)2 (α+β) шарової структури, синтезовані в щілинному діафрагмовому електролізері. Для вдосконалення безперервної технології електрохімічного синтезу гідроксиду нікелю була визначена можливість рециклинга відпрацьованого католіту, що містить сульфат натрію. Для цього були синтезовані зразки гідроксиду нікелю з розчину сульфату нікелю в присутності сульфату натрію з концентраціями 40, 60, 80, 100 і 120 г/л. Кристалічна структура зразків вивчена методом рентгенофазового аналізу, електрохімічні властивості вивчені методом циклічної вольтамперометрії. Показано, що базовий зразок, отриманий без присутності сульфату натрію, являє собою монофазну шарувату (α+β) структуру з високим вмістом α-модифікації. Кристалічність зразка не висока. Виявлено, що присутність сульфату натрію приводить до зменшення кристалічності гідроксиду нікелю за рахунок росту електропровідності розчину та зниження напруги на електролізері. Циклічна вольтрамперометрия показала, що синтез у щілинному діафрагмовому електролізері в присутності Na2SO4  (40–80 г/л) не веде до істотної зміни електрохімічної активності зразків гідроксиду нікелю. Збільшення концентрації сульфату натрію в католіті до 100–120 г/л приводить до збільшення електрохімічної активності – питомий струм піка розряду склав 3,7–3,9 А/г (у порівнянні з 2,1 А/г для контрольного зразка).

Комплексний аналіз характеристик зразків гідроксиду нікелю, синтезованих у присутності сульфату натрію, виявив можливість і перспективність рециклінга відпрацьованого католіту в безперервній технології одержання Ni(OH)2 у щілинному диафрагмовому електролізері. Виявлено, що при впровадженні рециклинга рекомендовано підтримувати високу концентрацію сульфату натрію (80–100 г/л)

Біографії авторів

Вадим Леонідович Коваленко , Український державний хіміко-технологічний університет; В’ятський державний університетв

Кандидат технічних наук, доцент

Кафедра аналітичної хімії та хімічної технології харчових добавок та косметичних засобів

Старший науковий співробітник

Центр компетенцій «Екологічні технології та системи»

Валерій Анатолійович Коток , Український державний хіміко-технологічний університет; В’ятський державний університет

Кандидат технічних наук, доцент

Кафедра процесів і апаратів, та загальної хімічної технології

Старший науковий співробітник

Центр компетенцій «Екологічні технології та системи»

Посилання

  1. Hall, D. S., Lockwood, D. J., Bock, C., MacDougall, B. R. (2015). Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471 (2174), 20140792. doi: http://doi.org/10.1098/rspa.2014.0792
  2. Vidotti, M., Torresi, R., Torresi, S. I. C. de. (2010). Nickel hydroxide modified electrodes: a review study concerning its structural and electrochemical properties aiming the application in electrocatalysis, electrochromism and secondary batteries. Química Nova, 33 (10), 2176–2186. doi: http://doi.org/10.1590/s0100-40422010001000030
  3. Chen, J., Bradhurst, D. H., Dou, S. X., Liu, H. K. (1999). Nickel Hydroxide as an Active Material for the Positive Electrode in Rechargeable Alkaline Batteries. Journal of The Electrochemical Society, 146 (10), 3606–3612. doi: http://doi.org/10.1149/1.1392522
  4. Sun, Y.-K., Lee, D.-J., Lee, Y. J., Chen, Z., Myung, S.-T. (2013). Cobalt-Free Nickel Rich Layered Oxide Cathodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 5 (21), 11434–11440. doi: http://doi.org/10.1021/am403684z
  5. Lang, J.-W., Kong, L.-B., Liu, M., Luo, Y.-C., Kang, L. (2009). Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon. Journal of Solid State Electrochemistry, 14 (8), 1533–1539. doi: http://doi.org/10.1007/s10008-009-0984-1
  6. Lang, J.-W., Kong, L.-B., Wu, W.-J., Liu, M., Luo, Y.-C., Kang, L. (2008). A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. Journal of Solid State Electrochemistry, 13 (2), 333–340. doi: http://doi.org/10.1007/s10008-008-0560-0 0
  7. Aghazadeh, M., Ghaemi, M., Sabour, B., Dalvand, S. (2014). Electrochemical preparation of α-Ni(OH)2 ultrafine nanoparticles for high-performance supercapacitors. Journal of Solid State Electrochemistry, 18 (6), 1569–1584. doi: http://doi.org/10.1007/s10008-014-2381-7
  8. Zheng, C., Liu, X., Chen, Z., Wu, Z., Fang, D. (2014). Excellent supercapacitive performance of a reduced graphene oxide/Ni(OH)2 composite synthesized by a facile hydrothermal route. Journal of Central South University, 21 (7), 2596–2603. doi: http://doi.org/10.1007/s11771-014-2218-7
  9. Wang, B., Williams, G. R., Chang, Z., Jiang, M., Liu, J., Lei, X., Sun, X. (2014). Hierarchical NiAl Layered Double Hydroxide/Multiwalled Carbon Nanotube/Nickel Foam Electrodes with Excellent Pseudocapacitive Properties. ACS Applied Materials & Interfaces, 6 (18), 16304–16311. doi: http://doi.org/10.1021/am504530e
  10. Kotok, V., Kovalenko, V. (2017). The properties investigation of the faradaic supercapacitor electrode formed on foamed nickel substrate with polyvinyl alcohol using. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 31–37. doi: http://doi.org/10.15587/1729-4061.2017.108839
  11. Kotok, V. A., Kovalenko, V. L., Solovov, V. A., Kovalenko, P. V., Ananchenko, B. A. (2018). Effect of deposition time on properties of electrochromic nickel hydroxide films prepared by cathodic template synthesis. ARPN Journal of Engineering and Applied Sciences, 13 (9), 3076–3086.
  12. Kotok, V., Kovalenko, V. (2018). A study of the effect of tungstate ions on the electrochromic properties of Ni(OH)2 films. Eastern-European Journal of Enterprise Technologies, 5 (12 (95)), 18–24. doi: http://doi.org/10.15587/1729-4061.2018.145223
  13. Wang, Y., Zhang, D., Peng, W., Liu, L., Li, M. (2011). Electrocatalytic oxidation of methanol at Ni–Al layered double hydroxide film modified electrode in alkaline medium. Electrochimica Acta, 56 (16), 5754–5758. doi: http://doi.org/10.1016/j.electacta.2011.04.049
  14. Huang, W., Li, Z. L., Peng, Y. D., Chen, S., Zheng, J. F., Niu, Z. J. (2005). Oscillatory electrocatalytic oxidation of methanol on an Ni(OH)2 film electrode. Journal of Solid State Electrochemistry, 9 (5), 284–289. doi: http://doi.org/10.1007/s10008-004-0599-5
  15. Fan, Y., Yang, Z., Cao, X., Liu, P., Chen, S., Cao, Z. (2014). Hierarchical Macro-Mesoporous Ni(OH)2 for Nonenzymatic Electrochemical Sensing of Glucose. Journal of the Electrochemical Society, 161 (10), B201–B206. doi: http://doi.org/10.1149/2.0251410jes
  16. Miao, Y., Ouyang, L., Zhou, S., Xu, L., Yang, Z., Xiao, M., Ouyang, R. (2014). Electrocatalysis and electroanalysis of nickel, its oxides, hydroxides and oxyhydroxides toward small molecules. Biosensors and Bioelectronics, 53, 428–439. doi: http://doi.org/10.1016/j.bios.2013.10.008
  17. Kovalenko, V., Kotok, V., Bolotin, A. (2016) Definition of factors influencing on Ni(OH)2 electrochemical characteristics for supercapacitors. Eastern European Journal of Enterprise Technologies, 5 (6 (83)), 17–22. doi: http://doi.org/10.15587/1729-4061.2016.79406
  18. Ramesh, T. N., Kamath, P. V., Shivakumara, C. (2005). Correlation of Structural Disorder with the Reversible Discharge Capacity of Nickel Hydroxide Electrode. Journal of The Electrochemical Society, 152 (4), A806. doi: http://doi.org/10.1149/1.1865852
  19. Zhao, Y., Zhu, Z., Zhuang, Q.-K. (2005). The relationship of spherical nano-Ni(OH)2 microstructure with its voltammetric behavior. Journal of Solid State Electrochemistry, 10 (11), 914–919. doi: http://doi.org/10.1007/s10008-005-0035-5
  20. Jayashree, R. S., Kamath, P. V., Subbanna, G. N. (2000). The Effect of Crystallinity on the Reversible Discharge Capacity of Nickel Hydroxide. Journal of The Electrochemical Society, 147 (6), 2029. doi: http://doi.org/10.1149/1.1393480
  21. Jayashree, R. S., Kamath, P. V. (1999). Factors governing the electrochemical synthesis of α-nickel (II) hydroxide. Journal of Applied Electrochemistry, 29 (4), 449–454. doi: http://doi.org/10.1023/a:1003493711239
  22. Kotok, V., Kovalenko, V. (2019) Definition of the influence of obtaining method on physical and chemical characteristics of Ni(OH)2 powders. Eastern-European Journal of Enterprise Technologies, 1 (12 (97)), 21–27. doi: http://doi.org/10.15587/1729-4061.2018.145223
  23. Ramesh, T. N., Kamath, P. V. (2006). Synthesis of nickel hydroxide: Effect of precipitation conditions on phase selectivity and structural disorder. Journal of Power Sources, 156 (2), 655–661. doi: http://doi.org/10.1016/j.jpowsour.2005.05.050
  24. Rajamathi, M., Vishnu Kamath, P., Seshadri, R. (2000). Polymorphism in nickel hydroxide: role of interstratification. Journal of Materials Chemistry, 10 (2), 503–506. doi: http://doi.org/10.1039/a905651c
  25. Rajamathi, M., Subbanna, G. N., Kamath P. V. (1997). On the existence of a nickel hydroxide phase which is neither α nor β. Journal of Materials Chemistry, 7 (11), 2293–2296. doi: http://doi.org/10.1039/a700390k
  26. Hu, M., Yang, Z., Lei, L., Sun, Y. (2011). Structural transformation and its effects on the electrochemical performances of a layered double hydroxide. Journal of Power Sources, 196 (3), 1569–1577. doi: http://doi.org/10.1016/j.jpowsour.2010.08.041
  27. Cordoba de Torresi, S. I., Provazi, K., Malta, M., Torresib, R. M. (2001). Effect of Additives in the Stabilization of the α Phase of Ni(OH)2 Electrodes. Journal of The Electrochemical Society, 148 (10), A1179–A1184. doi: http://doi.org/10.1149/1.1403731
  28. Zhang, Z., Zhu, Y., Bao, J., Zhou, Z., Lin, X., Zheng, H. (2012). Structural and electrochemical performance of additives-doped α-Ni(OH)2. Journal of Wuhan University of Technology-Mater. Sci. Ed., 27 (3), 538–541. doi: http://doi.org/10.1007/s11595-012-0500-9
  29. Sugimoto, A., Ishida, S., Hanawa, K. (1999). Preparation and Characterization of Ni/Al‐Layered Double Hydroxide. Journal of The Electrochemical Society, 146 (4), 1251–1255. doi: http://doi.org/10.1149/1.1391754
  30. Zhen, F. Z., Quan, J. W., Min, Y. L., Peng, Z., Jun, J. L. (2004). A study on the structure and electrochemical characteristics of a Ni/Al double hydroxide. Metals and Materials International, 10 (5), 485–488. doi: http://doi.org/10.1007/bf03027353
  31. Liu, B., Wang, X. Y., Yuan, H. T., Zhang, Y. S., Song, D. Y., Zhou, Z. X. (1999). Physical and electrochemical characteristics of aluminium-substituted nickel hydroxide. Journal of Applied Electrochemistry, 29 (7), 853–858. doi: http://doi.org/10.1023/a:1003537900947
  32. Caravaggio, G. A., Detellier, C., Wronski, Z. (2001). Synthesis, stability and electrochemical properties of NiAl and NiV layered double hydroxides. Journal of Materials Chemistry, 11 (3), 912–921. doi: http://doi.org/10.1039/b004542j
  33. Li, Y. W., Yao, J. H., Liu, C. J., Zhao, W. M., Deng, W. X., Zhong, S. K. (2010). Effect of interlayer anions on the electrochemical performance of Al-substituted α-type nickel hydroxide electrodes. International Journal of Hydrogen Energy, 35 (6), 2539–2545. doi: http://doi.org/10.1016/j.ijhydene.2010.01.015
  34. Zhao, Y. (2004). Al-substituted α-nickel hydroxide prepared by homogeneous precipitation method with urea. International Journal of Hydrogen Energy, 29 (8), 889–896. doi: http://doi.org/10.1016/j.ijhydene.2003.10.006
  35. Lei, L., Hu, M., Gao, X., Sun, Y. (2008). The effect of the interlayer anions on the electrochemical performance of layered double hydroxide electrode materials. Electrochimica Acta, 54 (2), 671–676. doi: http://doi.org/10.1016/j.electacta.2008.07.004
  36. Faour, A., Mousty, C., Prevot, V., Devouard, B., De Roy, A., Bordet, P. et. al. (2012). Correlation among Structure, Microstructure, and Electrochemical Properties of NiAl–CO3 Layered Double Hydroxide Thin Films. The Journal of Physical Chemistry C, 116 (29), 15646–15659. doi: http://doi.org/10.1021/jp300780w
  37. Kotok, V., Kovalenko, V., Vlasov, S. (2018). Investigation of Ni­Al hydroxide with silver addition as an active substance of alkaline batteries. Eastern-European Journal of Enterprise Technologies, 3 (6 (93)), 6–11. doi: http://doi.org/10.15587/1729-4061.2018.133465
  38. Kovalenko, V., Kotok, V. (2017). Study of the influence of the template concentration under homogeneous precepitation on the properties of Ni(OH)2 for supercapacitors. Eastern-European Journal of Enterprise Technologies, 4 (6 (88)), 17–22. doi: http://doi.org/10.15587/1729-4061.2017.106813
  39. Kovalenko, V., Kotok, V. (2017). Obtaining of Ni–Al layered double hydroxide by slit diaphragm electrolyzer. Eastern-European Journal of Enterprise Technologies, 2 (6 (86)), 11–17. doi: http://doi.org/10.15587/1729-4061.2017.95699
  40. Kovalenko, V., Kotok, V. (2017). Definition of effectiveness of β-Ni(OH)2 application in the alkaline secondary cells and hybrid supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (89)), 17–22. doi: http://doi.org/10.15587/1729-4061.2017.110390
  41. Li, J., Luo, F., Tian, X., Lei, Y., Yuan, H., Xiao, D. (2013). A facile approach to synthesis coral-like nanoporous β-Ni(OH) 2 and its supercapacitor application. Journal of Power Sources, 243, 721–727. doi: http://doi.org/10.1016/j.jpowsour.2013.05.172
  42. Kovalenko, V., Kotok, V. (2018). Influence of ultrasound and template on the properties of nickel hydroxide as an active substance of supercapacitors. Eastern-European Journal of Enterprise Technologies, 3 (12 (93)), 32–39. doi: http://doi.org/10.15587/1729-4061.2018.133548
  43. Kovalenko, V. L., Kotok, V. A., Sykchin, A. A., Mudryi, I. A., Ananchenko, B. A., Burkov, A. A. et. al. (2017). Nickel hydroxide obtained by high-temperature two-step synthesis as an effective material for supercapacitor applications. Journal of Solid State Electrochemistry, 21 (3), 683–691. doi: http://doi.org/10.1007/s10008-016-3405-2
  44. Kovalenko, V. L., Kotok, V. A., Sykchin, A., Ananchenko, B. A., Chernyad’ev, A. V., Burkov, A. A. et. al. (2020). Al3+ Additive in the Nickel Hydroxide Obtained by High-Temperature Two-Step Synthesis: Activator or Poisoner for Chemical Power Source Application? Journal of The Electrochemical Society, 167 (10), 100530. doi: http://doi.org/10.1149/1945-7111/ab9a2a
  45. Miao, C., Zhu, Y., Zhao, T., Jian, X., Li, W. (2015). Synthesis and electrochemical performance of mixed phase α/β nickel hydroxide by codoping with Ca2+ and PO4 3−. Ionics, 21 (12), 3201–3208. doi: http://doi.org/10.1007/s11581-015-1507-y
  46. Li, Y., Yao, J., Zhu, Y., Zou, Z Wang, H. (2012). Synthesis and electrochemical performance of mixed phase α/β nickel hydroxide. Journal of Power Sources, 203, 177–183. doi: http://doi.org/10.1016/j.jpowsour.2011.11.081
  47. Kovalenko, V., Kotok, V. (2018). Comparative investigation of electrochemically synthesized (α+β) layered nickel hydroxide with mixture of α-Ni(OH)2 and β-Ni(OH)2. Eastern-European Journal of Enterprise Technologies, 2 (6 (92)), 16–22. doi: http://doi.org/10.15587/1729-4061.2018.125886
  48. Kotok, V., Kovalenko, V., Malyshev, V. (2017). Comparison of oxygen evolution parameters on different types of nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 12–19. doi: http://doi.org/10.15587/1729-4061.2017.109770
  49. Kotok, V., Kovalenko, V. (2018). Definition of the aging process parameters for nickel hydroxide in the alkaline medium. Eastern-European Journal of Enterprise Technologies, 2 (12 (92)), 54–60. doi: http://doi.org/10.15587/1729-4061.2018.127764
  50. Ezhov, B. B., Rozovskiy, V. M. (1991). Anions as activatore for nickel hydroxides electrode. 42th Meet. of the Int. Soc. Electrochem. Montreux, Abstract No. 7-026.
  51. Ezhov, B. B., Rozovskiy, V. M. (1991). Anionic activation of the nickel hydroxide electrode used in alkaline storage batteries. 33rd IUPAC Congress. Budapest, Abstract No. 3030.
  52. Burmistr, M. V., Boiko, V. S., Lipko, E. O., Gerasimenko, K. O., Gomza, Y. P., Vesnin, R. L. et. al. (2014). Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers. Mechanics of Composite Materials, 50 (2), 213–222. doi: http://doi.org/10.1007/s11029-014-9408-0
  53. Kovalenko, V., Kotok, V. (2019). Anionic carbonate activation of layered (α+β) nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 3 (6 (99)), 44–52. doi: http://doi.org/10.15587/1729-4061.2019.169461
  54. Kovalenko, V., Kotok, V. (2019) Influence of the carbonate ion on characteristics of electrochemically synthesized layered (α+β) nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 1 (6 (97)), 40–46. doi: http://doi.org/10.15587/1729-4061.2019.155738
  55. Vasserman, I. N. (1980). Khimicheskoe osazdenie is rastvorov. Leningrad: Khimia, 208.
  56. Qing, L., Haifang, N., Yun, C., Xiaoyan, C., Yongjun, L., Gang, C. (2013). Preparation and supercapacitor application of the single crystal nickel hydroxide and oxide nanosheets. Materials Research Bulletin, 48 (9), 3518–3526. doi: http://doi.org/10.1016/j.materresbull.2013.05.049
  57. Fang, B., Gu, A., Wang, G., Li, B., Zhang, C., Fang, Y., Zhang, X. (2009). Synthesis hexagonal ß-Ni(OH)2 nanosheets for use in electrochemistry sensors. Microchimica Acta, 167 (1-2), 47–52. doi: http://doi.org/10.1007/s00604-009-0213-8
  58. Gourrier, L., Deabate, S., Michel, T., Paillet, M., Hermet, P., Bantignies, J.-L., Henn, F. (2011). Characterization of Unusually Large “Pseudo-Single Crystal” of β-Nickel Hydroxide. The Journal of Physical Chemistry C, 115 (30), 15067–15074. doi: http://doi.org/10.1021/jp203222t
  59. Liu, C., Li, Y. (2009). Synthesis and characterization of amorphous α-nickel hydroxide. Journal of Alloys and Compounds, 478 (1-2), 415–418. doi: http://doi.org/10.1016/j.jallcom.2008.11.049
  60. Kotok, V., Kovalenko, V. (2020) The study of the increased temperature influence on the electrochrome and electrochemical characteristics of Ni(OH)2-PVA composite films. Eastern-European Journal of Enterprise Technologies, 3 (6 (105)), 6–12. doi: http://doi.org/10.15587/1729-4061.2020.205352
  61. Li, Y., Yang, Q., Yao, J., Zhang, Z., Liu, C. (2010). Effect of synthesis temperature on the phase structure and electrochemical performance of nickel hydroxide. Ionics, 16 (3), 221–225. doi: http://doi.org/10.1007/s11581-009-0397-2
  62. Ramesh, T. N., Kamath, P. V. (2008) Temperature-induced control over phase selection among hydroxides of nickel. Bulletin of Materials Science, 31 (2), 169–172. doi: http://doi.org/10.1007/s12034-008-0029-x
  63. Zhang, W. H., Guo, X. D., He, J., Qian, Z. Y. (2008). Preparation of Ni(II)/Ti(IV) layered double hydroxide at high supersaturation. Journal of the European Ceramic Society, 28 (8), 1623–1629. doi: http://doi.org/10.1016/j.jeurceramsoc.2007.11.016
  64. He, J., Wei, M., Li, B., Kang, Y., Evans, D. G., Duan, X. (2006). Preparation of Layered Double Hydroxides. Struct Bond, 119, 89–119. doi: http://doi.org/10.1007/430_006
  65. Lei, L., Hu, M., Gao, X., Sun, Y. (2008). The effect of the interlayer anions on the electrochemical performance of layered double hydroxide electrode materials. Electrochimica Acta, 54 (2), 671–676. doi: http://doi.org/10.1016/j.electacta.2008.07.004
  66. Kovalenko, V., Kotok, V. (2020).The change in the nickel hydroxide properties under the influence of thermal field in situ and ex situ during electrochemical synthesis. Eastern-European Journal of Enterprise Technologies, 4 (12 (106)), 31–38. doi: http://doi.org/10.15587/1729-4061.2020.194610
  67. Kovalenko, V., Kotok, V., Kovalenko, I. (2018). Activation of the nickel foam as a current collector for application in supercapacitors. Eastern-European Journal of Enterprise Technologies, 3 (12 (93)), 56–62. doi: http://doi.org/10.15587/1729-4061.2018.133472

##submission.downloads##

Опубліковано

2021-02-10

Як цитувати

Коваленко , В. Л., & Коток , В. А. (2021). Вдосконалення безперервної технології електрохімічного отримання гідроксиду нікеля шляхом введення рециклінгу розчину. Eastern-European Journal of Enterprise Technologies, 1(6 (109), 30–38. https://doi.org/10.15587/1729-4061.2021.224223

Номер

Розділ

Технології органічних та неорганічних речовин