Розробка способу отримання модулю CdS/CdTe/Cu/Au на гнучкій підкладці, призначеного для резервного живлення систем попередження надзвичайних ситуацій
DOI:
https://doi.org/10.15587/1729-4061.2021.225694Ключові слова:
плівковий фотоелемент, гнучка підкладка, мікромодуль, сонячний елемент, телурид кадмію, вольт-амперна характеристикаАнотація
Проведено дослідження методів отримання базових шарів телуриду кадмію для створення ефективних сонячних елементів на гнучкій підкладці, призначених для резервного електроживлення систем безпеки та контролю об’єктів. Враховуючи те, що поліамідна плівка стабільна до температури 450 °С, формування базових шарів сонячних елементів на основі телуриду кадмію на гнучких поліамідних підкладках здійснювалось методом магнетронного розпилення на постійному струмі. При використанні обраного методу були отримані експериментальні зразки мікромодулів на гнучкій підкладці з послідовно з’єднаними сонячними елементами на основі CdS/CdTe/Cu/Au. Для розуміння впливу на ефективність всього мікромодуля виходу з строю одного або декількох сонячних елементів в процесі експлуатації проведено аналіз вихідних параметрів і світлових діодних характеристик одиничних сонячних елементів мікромодулів. Конструкція мікромодулів, в якому сонячні елементи з'єднувалися послідовно, дозволяла окремо вимірювати їх вихідні параметри. Встановлено що створення тунельного тильного контакту Cu/Au дозволило отримати високі значення вихідних параметрів для окремих сонячних елементів, але у складі мікромодуля спостерігається обмеження зашунтованим сонячним елементом. Однак найбільшу роль у зниженні коефіціента корисної дії всього мікромодуля відіграї неефективне поглинання випромінювання при проходженні через поліамідну плівку, що призвело до зниження ефективності всього мікромодуля, в якому наявний зашунтований елемент до 3,9 %. Максимальна ефективність отриманих зразків мікромодулів становила 5,3 %
Посилання
- Stallings, W. (2017). Physical Security Essentials. Computer and Information Security Handbook, 965–979. doi: https://doi.org/10.1016/b978-0-12-803843-7.00069-7
- Yang, D., Yin, H. (2011). Energy Conversion Efficiency of a Novel Hybrid Solar System for Photovoltaic, Thermoelectric, and Heat Utilization. IEEE Transactions on Energy Conversion, 26 (2), 662–670. doi: https://doi.org/10.1109/tec.2011.2112363
- Gaur, A., Tiwari, G. N. (2013). Performance of Photovoltaic Modules of Different Solar Cells. Journal of Solar Energy, 2013, 1–13. doi: https://doi.org/10.1155/2013/734581
- Van de Kaa, G., Rezaei, J., Kamp, L., de Winter, A. (2014). Photovoltaic technology selection: A fuzzy MCDM approach. Renewable and Sustainable Energy Reviews, 32, 662–670. doi: https://doi.org/10.1016/j.rser.2014.01.044
- Khrypunov, G., Vambol, S., Deyneko, N., Sychikova, Y. (2016). Increasing the efficiency of film solar cells based on cadmium telluride. Eastern-European Journal of Enterprise Technologies, 6 (5 (84)), 12–18. doi: https://doi.org/10.15587/1729-4061.2016.85617
- Leterrier, Y., Medico, L., Demarco, F., Manson, J.-A.E., Betz, U., Escola, M. F. et. al. (2004). Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays. Thin Solid Films, 460 (1-2), 156–166. doi: https://doi.org/10.1016/j.tsf.2004.01.052
- Leterrier, Y., Pinyol, A., Gilliéron, D., Månson, J.-A. E., Timmermans, P. H. M., Bouten, P. C. P., Templier, F. (2010). Mechanical failure analysis of thin film transistor devices on steel and polyimide substrates for flexible display applications. Engineering Fracture Mechanics, 77 (4), 660–670. doi: https://doi.org/10.1016/j.engfracmech.2009.12.016
- McCandless, B. E. (2001). Thermochemical and Kinetic Aspects of Cadmium Telluride Solar Cell Processing. MRS Proceedings, 668. doi: https://doi.org/10.1557/proc-668-h1.6
- Deyneko, N., Semkiv, O., Khmyrov, I., Khryapynskyy, A. (2018). Investigation of the combination of ITO/CdS/CdTe/Cu/Au solar cells in microassembly for electrical supply of field cables. Eastern-European Journal of Enterprise Technologies, 1 (12 (91)), 18–23. doi: https://doi.org/10.15587/1729-4061.2018.124575
- Deyneko, N., Semkiv, O., Soshinsky, O., Streletc, V., Shevchenko, R. (2018). Results of studying the Cu/ITO transparent back contacts for solar cells SnO2:F/CdS/CdTe/Cu/ITO. Eastern-European Journal of Enterprise Technologies, 4 (5 (94)), 29–34. doi: https://doi.org/10.15587/1729-4061.2018.139867
- Krč, J., Zeman, M., Smole, F., Topič, M. (2002). Optical modeling ofa-Si:H solar cells deposited on textured glass/SnO2 substrates. Journal of Applied Physics, 92 (2), 749–755. doi: https://doi.org/10.1063/1.1487910
- Izu, M., Ellison, T. (2003). Roll-to-roll manufacturing of amorphous silicon alloy solar cells with in situ cell performance diagnostics. Solar Energy Materials and Solar Cells, 78 (1-4), 613–626. doi: https://doi.org/10.1016/s0927-0248(02)00454-3
- Campbell, P., Green, M. A. (1987). Light trapping properties of pyramidally textured surfaces. Journal of Applied Physics, 62 (1), 243–249. doi: https://doi.org/10.1063/1.339189
- Söderström, K., Escarré, J., Cubero, O., Haug, F.-J., Perregaux, S., Ballif, C. (2010). UV-nano-imprint lithography technique for the replication of back reflectors for n-i-p thin film silicon solar cells. Progress in Photovoltaics: Research and Applications, 19 (2), 202–210. doi: https://doi.org/10.1002/pip.1003
- Romeo, A., Khrypunov, G., Kurdesau, F., Arnold, M., Bätzner, D. L., Zogg, H., Tiwari, A. N. (2006). High-efficiency flexible CdTe solar cells on polymer substrates. Solar Energy Materials and Solar Cells, 90 (18-19), 3407–3415. doi: https://doi.org/10.1016/j.solmat.2005.09.020
- Andorka, F. (2014). First Solar Sets World Record For CDTE Solar Cell Efficiency. Available at: https://www.solarpowerworldonline.com/2014/02/first-solar-sets-world-record-cdte-solar-cell-efficiency/
- Chu, T. L., Chu, S. S. (1992). High efficiency thin film CdS/CdTe solar cells. International Journal of Solar Energy, 12 (1-4), 121–132. doi: https://doi.org/10.1080/01425919208909755
- Romeo, N., Bosio, A., Tedeschi, R., Romeo, A., Canevari, V. (1999). A highly efficient and stable CdTe/CdS thin film solar cell. Solar Energy Materials and Solar Cells, 58 (2), 209–218. doi: https://doi.org/10.1016/s0927-0248(98)00204-9
- Britt, J., Ferekides, C. (1993). Thin‐film CdS/CdTe solar cell with 15.8% efficiency. Applied Physics Letters, 62 (22), 2851–2852. doi: https://doi.org/10.1063/1.109629
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2021 Наталья Викторовна Дейнеко , Сергей Анатольевич Еременко , Геннадий Владимирович Камишенцев , Игорь Михайлович Кривулькин , Николай Васильевич Матюшенко , Олег Николаевич Мирошник , Андрей Витальевич Прусский , Александр Игоревич Сошинский , Виктор Маркович Стрелец , Роман Иванович Шевченко
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.