Синтез Ni(OH)2, придатного до використання в суперконденсаторах, методом холодного гомогеного темплатного осадження

Автор(и)

  • Вадим Леонідович Коваленко Український державний хіміко-технологічний університет; В’ятський державний університет, Україна https://orcid.org/0000-0002-8012-6732
  • Валерій Анатолійович Коток Український державний хіміко-технологічний університет; В’ятський державний університет, Україна https://orcid.org/0000-0001-8879-7189

DOI:

https://doi.org/10.15587/1729-4061.2021.227952

Ключові слова:

гідроксид нікелю, темплатний синтез, холодне гомогенне осадження, суперконденсатор

Анотація

Високу електрохімічну активність в суперконденсаторах проявляє α-Ni(OH)2, отриманий темплатним гомогеним осадженням. Основний недолік –високі витрати енергії для підтримання високої температури при синтезі. Для зниження енерговитрат запропоновано знизити температуру синтеза. В дослідженні було проведено отримання Ni(OH)2 методом холодного темплатного гомогенного осадження при використанні в якості темплату Culminal C8465 (0,5 %), протягом 6 місяців при t=20–35 °С.

Електрохімічні характеристики зразку вивчались циклічною вольтамперометрією та гальваностатичним зарядно-розрядним циклюванням намазного “binder-free” електрода, виготовленого без введення зовнішнього зв’язуючого, в режимі суперконденсатора. Визначено, що утворюється низькокристалічний α-Ni(OH)2, який складається із агломератів часток сферичної форми. Виявлено низькі питомі характеристики гідроксиду нікелю на початку циклювання через блокування активної поверхні. Показано, що питома ємність зразку підвищується при подальшому циклюванні за рахунок розпаду агрегатів на більш дрібні частки, отримано питомі ємності 80 Ф/г и 38 мА·год/г. Однак виявлено недостатність зв’язуючих властивостей залишків темплата, в результаті чого відбувається зниження питомих характеристик. Зроблено висновок щодо необхідності введення зовнішнього зв’язуючого.

Виявлено не описаний ефект суттєвого підвищення питомої ємності при висушуванні просоченого лугом електрода, обумовлений розпадом агломератів часток при карбонізації лугу (максимальна ємність – 135 Ф/г и 69 мА·год/г). Зроблено висновок щодо перспективності застосування виявленого ефекту будь-яких зразків гідроксиду нікелю, отриманих різними методами об’ємного темплатного синтезу

Біографії авторів

Вадим Леонідович Коваленко, Український державний хіміко-технологічний університет; В’ятський державний університет

Кандидат технічних наук, доцент

Кафедра аналітичної хімії та хімічної технології харчових добавок та косметичних засобів

Старший науковий співробітник

Центр компетенцій «Екологічні технології та системи»

Валерій Анатолійович Коток, Український державний хіміко-технологічний університет; В’ятський державний університет

Кандидат технічних наук, доцент

Кафедра процесів і апаратів, та загальної хімічної технології

Старший науковий співробітник

Центр компетенцій «Екологічні технології та системи»

Посилання

  1. Simon, P., Gogotsi, Y. (2008). Materials for electrochemical capacitors. Nature Materials, 7 (11), 845–854. doi: https://doi.org/10.1038/nmat2297
  2. Burke, A. (2007). R&D considerations for the performance and application of electrochemical capacitors. Electrochimica Acta, 53 (3), 1083–1091. doi: https://doi.org/10.1016/j.electacta.2007.01.011
  3. Lang, J.-W., Kong, L.-B., Liu, M., Luo, Y.-C., Kang, L. (2009). Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon. Journal of Solid State Electrochemistry, 14 (8), 1533–1539. doi: https://doi.org/10.1007/s10008-009-0984-1
  4. Lang, J.-W., Kong, L.-B., Wu, W.-J., Liu, M., Luo, Y.-C., Kang, L. (2008). A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. Journal of Solid State Electrochemistry, 13 (2), 333–340. doi: https://doi.org/10.1007/s10008-008-0560-0
  5. Aghazadeh, M., Ghaemi, M., Sabour, B., Dalvand, S. (2014). Electrochemical preparation of α-Ni(OH)2 ultrafine nanoparticles for high-performance supercapacitors. Journal of Solid State Electrochemistry, 18 (6), 1569–1584. doi: https://doi.org/10.1007/s10008-014-2381-7
  6. Zheng, C., Liu, X., Chen, Z., Wu, Z., Fang, D. (2014). Excellent supercapacitive performance of a reduced graphene oxide/Ni(OH)2 composite synthesized by a facile hydrothermal route. Journal of Central South University, 21 (7), 2596–2603. doi: https://doi.org/10.1007/s11771-014-2218-7
  7. Wang, B., Williams, G. R., Chang, Z., Jiang, M., Liu, J., Lei, X., Sun, X. (2014). Hierarchical NiAl Layered Double Hydroxide/Multiwalled Carbon Nanotube/Nickel Foam Electrodes with Excellent Pseudocapacitive Properties. ACS Applied Materials & Interfaces, 6 (18), 16304–16311. doi: https://doi.org/10.1021/am504530e
  8. Hall, D. S., Lockwood, D. J., Bock, C., MacDougall, B. R. (2015). Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471 (2174), 20140792. doi: https://doi.org/10.1098/rspa.2014.0792
  9. Solovov, V. A., Nikolenko, N. V., Kovalenko, V. L., Kotok, V. A., Burkov, A. А., Kondrat’ev, D. A. et. al. (2018). Synthesis of Ni(II)-Ti(IV) Layered Double Hydroxides Using Coprecipitation At High Supersaturation Method. ARPN Journal of Engineering and Applied Sciences, 13 (24), 9652–9656. Available at: http://www.arpnjournals.org/jeas/research_papers/rp_2018/jeas_1218_7500.pdf
  10. Liu, C., Huang, L., Li, Y., Sun, D. (2010). Synthesis and electrochemical performance of amorphous nickel hydroxide codoped with Fe3+ and CO 2−3. Ionics, 16 (3), 215–219. doi: https://doi.org/10.1007/s11581-009-0383-8
  11. Li, J., Luo, F., Tian, X., Lei, Y., Yuan, H., Xiao, D. (2013). A facile approach to synthesis coral-like nanoporous β-Ni(OH) 2 and its supercapacitor application. Journal of Power Sources, 243, 721–727. doi: https://doi.org/10.1016/j.jpowsour.2013.05.172
  12. Kovalenko, V. L., Kotok, V. A., Sykchin, A., Ananchenko, B. A., Chernyad’ev, A. V., Burkov, A. A. et. al. (2020). Al3+ Additive in the Nickel Hydroxide Obtained by High-Temperature Two-Step Synthesis: Activator or Poisoner for Chemical Power Source Application? Journal of The Electrochemical Society, 167 (10), 100530. doi: https://doi.org/10.1149/1945-7111/ab9a2a
  13. Xiao-yan, G., Jian-cheng, D. (2007). Preparation and electrochemical performance of nano-scale nickel hydroxide with different shapes. Materials Letters, 61 (3), 621–625. doi: https://doi.org/10.1016/j.matlet.2006.05.026
  14. Tizfahm, J., Safibonab, B., Aghazadeh, M., Majdabadi, A., Sabour, B., Dalvand, S. (2014). Supercapacitive behavior of β-Ni(OH) 2 nanospheres prepared by a facile electrochemical method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 443, 544–551. doi: https://doi.org/10.1016/j.colsurfa.2013.12.024
  15. Aghazadeh, M., Golikand, A. N., Ghaemi, M. (2011). Synthesis, characterization, and electrochemical properties of ultrafine β-Ni(OH)2 nanoparticles. International Journal of Hydrogen Energy, 36 (14), 8674–8679. doi: https://doi.org/10.1016/j.ijhydene.2011.03.144
  16. Kovalenko, V., Kotok, V. (2019). Anionic carbonate activation of layered (α+β) nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 3 (6 (99)), 44–52. doi: https://doi.org/10.15587/1729-4061.2019.169461
  17. Kovalenko, V., Kotok, V. (2019). Influence of the carbonate ion on characteristics of electrochemically synthesized layered (α+β) nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 1 (6 (97)), 40–46. doi: https://doi.org/10.15587/1729-4061.2019.155738
  18. Hall, D. S., Lockwood, D. J., Poirier, S., Bock, C., MacDougall, B. R. (2012). Raman and Infrared Spectroscopy of α and β Phases of Thin Nickel Hydroxide Films Electrochemically Formed on Nickel. The Journal of Physical Chemistry A, 116 (25), 6771–6784. doi: https://doi.org/10.1021/jp303546r
  19. Кovalenko, V., Kotok, V., Bolotin, O. (2016). Definition of factors influencing on Ni(OH)2 electrochemical characteristics for supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (83)), 17–22. doi: https://doi.org/10.15587/1729-4061.2016.79406
  20. Hu, M., Lei, L. (2006). Effects of particle size on the electrochemical performances of a layered double hydroxide, [Ni4Al(OH)10]NO3. Journal of Solid State Electrochemistry, 11 (6), 847–852. doi: https://doi.org/10.1007/s10008-006-0231-y
  21. Vasserman, I. N. (1980). Himicheskoe osazhdenie iz rastvorov. Leningrad: Himiya, 208.
  22. Bora, M. (2003). Homogeneous precipitation of nickel hydroxide powders. Iowa State University, 119. doi: https://doi.org/10.31274/rtd-180813-146
  23. Tang, H. W., Wang, J. L., Chang, Z. R. (2008). Preparation and characterization of nanoscale nickel hydroxide using hydrothermal synthesis method. J. Func. Mater., 39 (3), 469–476.
  24. Tang, Y., Liu, Y., Yu, S., Zhao, Y., Mu, S., Gao, F. (2014). Hydrothermal synthesis of a flower-like nano-nickel hydroxide for high performance supercapacitors. Electrochimica Acta, 123, 158–166. doi: https://doi.org/10.1016/j.electacta.2013.12.187
  25. Yang, L.-X., Zhu, Y.-J., Tong, H., Liang, Z.-H., Li, L., Zhang, L. (2007). Hydrothermal synthesis of nickel hydroxide nanostructures in mixed solvents of water and alcohol. Journal of Solid State Chemistry, 180 (7), 2095–2101. doi: https://doi.org/10.1016/j.jssc.2007.05.009
  26. Cui, H. L., Zhang, M. L. (2009). Synthesis of flower-like nickel hydroxide by ionic liquids-assisted. J. Yanan. Univ., 28 (2), 76–83.
  27. Xu, L., Ding, Y.-S., Chen, C.-H., Zhao, L., Rimkus, C., Joesten, R., Suib, S. L. (2008). 3D Flowerlike α-Nickel Hydroxide with Enhanced Electrochemical Activity Synthesized by Microwave-Assisted Hydrothermal Method. Chemistry of Materials, 20 (1), 308–316. doi: https://doi.org/10.1021/cm702207w
  28. Córdoba de Torresi, S. I., Provazi, K., Malta, M., Torresi, R. M. (2001). Effect of Additives in the Stabilization of the α Phase of Ni(OH)[sub 2] Electrodes. Journal of The Electrochemical Society, 148 (10), A1179. doi: https://doi.org/10.1149/1.1403731
  29. Kotok, V., Kovalenko, V., Malyshev, V. (2017). Comparison of oxygen evolution parameters on different types of nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 12–19. doi: https://doi.org/10.15587/1729-4061.2017.109770
  30. Oliva, P., Leonardi, J., Laurent, J. F., Delmas, C., Braconnier, J. J., Figlarz, M. et. al. (1982). Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides. Journal of Power Sources, 8 (2), 229–255. doi: https://doi.org/10.1016/0378-7753(82)80057-8
  31. Kotok, V., Kovalenko, V. (2018). A study of the effect of tungstate ions on the electrochromic properties of Ni(OH)2 films. Eastern-European Journal of Enterprise Technologies, 5 (12 (95)), 18–24. doi: https://doi.org/10.15587/1729-4061.2018.145223
  32. Vlasova, E., Kovalenko, V., Kotok, V., Vlasov, S., Sukhyy, K. (2017). A study of the influence of additives on the process of formation and corrosive properties of tripolyphosphate coatings on steel. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 45–51. doi: https://doi.org/10.15587/1729-4061.2017.111977
  33. Kotok, V., Kovalenko, V. (2017). The properties investigation of the faradaic supercapacitor electrode formed on foamed nickel substrate with polyvinyl alcohol using. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 31–37. doi: https://doi.org/10.15587/1729-4061.2017.108839
  34. Burmistr, M. V., Boiko, V. S., Lipko, E. O., Gerasimenko, K. O., Gomza, Y. P., Vesnin, R. L. et. al. (2014). Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers. Mechanics of Composite Materials, 50 (2), 213–222. doi: https://doi.org/10.1007/s11029-014-9408-0
  35. Kovalenko, V., Kotok, V. (2018). Influence of ultrasound and template on the properties of nickel hydroxide as an active substance of supercapacitors. Eastern-European Journal of Enterprise Technologies, 3 (12 (93)), 32–39. doi: https://doi.org/10.15587/1729-4061.2018.133548
  36. Mehdizadeh, R., Sanati, S., Saghatforoush, L. A. (2013). Effect of PEG6000 on the morphology the β-Ni(OH)2 nanostructures: solvothermal synthesis, characterization, and formation mechanism. Research on Chemical Intermediates, 41 (4), 2071–2079. doi: https://doi.org/10.1007/s11164-013-1332-8
  37. Ecsedi, Z., Lazău, I., Păcurariu, C. (2007). Synthesis of mesoporous alumina using polyvinyl alcohol template as porosity control additive. Processing and Application of Ceramics, 1 (1-2), 5–9. doi: https://doi.org/10.2298/pac0702005e
  38. Pon-On, W., Meejoo, S., Tang, I.-M. (2008). Formation of hydroxyapatite crystallites using organic template of polyvinyl alcohol (PVA) and sodium dodecyl sulfate (SDS). Materials Chemistry and Physics, 112 (2), 453–460. doi: https://doi.org/10.1016/j.matchemphys.2008.05.082
  39. Miyake, K., Hirota, Y., Uchida, Y., Nishiyama, N. (2016). Synthesis of mesoporous MFI zeolite using PVA as a secondary template. Journal of Porous Materials, 23 (5), 1395–1399. doi: https://doi.org/10.1007/s10934-016-0199-7
  40. Wanchanthu, R., Thapol, A. (2011). The Kinetic Study of Methylene Blue Adsorption over MgO from PVA Template Preparation. Journal of Environmental Science and Technology, 4 (5), 552–559. doi: https://doi.org/10.3923/jest.2011.552.559
  41. Kotok, V. A., Kovalenko, V. L., Solovov, V. A., Kovalenko, P. V., Ananchenko, B. A. (2018). Effect of deposition time on properties of electrochromic nickel hydroxide films prepared by cathodic template synthesis. ARPN Journal of Engineering and Applied Sciences, 13 (9), 3076–3086.
  42. Tan, Y., Srinivasan, S., Choi, K.-S. (2005). Electrochemical Deposition of Mesoporous Nickel Hydroxide Films from Dilute Surfactant Solutions. Journal of the American Chemical Society, 127 (10), 3596–3604. doi: https://doi.org/10.1021/ja0434329
  43. Kotok, V., Kovalenko, V. (2018). A study of multilayered electrochromic platings based on nickel and cobalt hydroxides. Eastern-European Journal of Enterprise Technologies, 1 (12 (91)), 29–35. doi: https://doi.org/10.15587/1729-4061.2018.121679
  44. Parkhomchuk, E. V., Sashkina, K. A., Rudina, N. A., Kulikovskaya, N. A., Parmon, V. N. (2013). Template synthesis of 3D-structured macroporous oxides and hierarchical zeolites. Catalysis in Industry, 5 (1), 80–89. doi: https://doi.org/10.1134/s2070050412040150
  45. Gu, W., Liao, L. S., Cai, S. D., Zhou, D. Y., Jin, Z. M., Shi, X. B., Lei, Y. L. (2012). Adhesive modification of indium–tin-oxide surface for template attachment for deposition of highly ordered nanostructure arrays. Applied Surface Science, 258 (20), 8139–8145. doi: https://doi.org/10.1016/j.apsusc.2012.05.009
  46. Kovalenko, V., Kotok, V. (2017). Study of the influence of the template concentration under homogeneous precepitation on the properties of Ni(OH)2 for supercapacitors. Eastern-European Journal of Enterprise Technologies, 4 (6 (88)), 17–22. doi: https://doi.org/10.15587/1729-4061.2017.106813
  47. Ivanov, K. V., Alekseeva, O. V., Kraev, A. S., Agafonov, A. V. (2019). Template-Free Synthesis and Properties of Mesoporous Calcium Titanate. Protection of Metals and Physical Chemistry of Surfaces, 55 (4), 667–670. doi: https://doi.org/10.1134/s2070205119040063
  48. Shestakova, D. O., Sashkina, K. A., Parkhomchuk, E. V. (2019). Template-Free Synthesis of Hierarchical Zeolite ZSM-5. Petroleum Chemistry, 59 (8), 838–844. doi: https://doi.org/10.1134/s0965544119080188
  49. Bhat, K. S., Nagaraja, H. S. (2019). Morphology-dependent electrochemical performances of nickel hydroxide nanostructures. Bulletin of Materials Science, 42 (6). doi: https://doi.org/10.1007/s12034-019-1951-9
  50. Wang, R.-N., Li, Q.-Y., Wang, Z., Wei, Q., Nie, Z.-R. (2008). Synthesis of nickel hydroxide flower-like microspheres by template-free liquid process. Chemical Journal of Chinese Universities, 29 (1), 18–22.
  51. Hadden, J. H. L., Ryan, M. P., Riley, D. J. (2019). Examining the charging behaviour of nickel hydroxide nanomaterials. Electrochemistry Communications, 101, 47–51. doi: https://doi.org/10.1016/j.elecom.2019.02.012
  52. Kovalenko, V., Kotok, V. (2018). Synthesis of Ni(OH)2 by template homogeneous precipitation for application in the binder­free electrode of supercapacitor. Eastern-European Journal of Enterprise Technologies, 4(12 (94)), 29–35. doi: https://doi.org/10.15587/1729-4061.2018.140899
  53. Kovalenko, V., Kotok, V. (2019). The effect of template residual content on supercapacitive characteristics of Ni(OH)2, obtained by template homogeneous precipitation. Eastern-European Journal of Enterprise Technologies, 5 (12 (101)), 29–37. doi: https://doi.org/10.15587/1729-4061.2019.181020
  54. Kovalenko, V., Kotok, V., Kovalenko, I. (2018). Activation of the nickel foam as a current collector for application in supercapacitors. Eastern-European Journal of Enterprise Technologies, 3 (12 (93)), 56–62. doi: https://doi.org/10.15587/1729-4061.2018.133472

##submission.downloads##

Опубліковано

2021-04-12

Як цитувати

Коваленко, В. Л., & Коток, В. А. (2021). Синтез Ni(OH)2, придатного до використання в суперконденсаторах, методом холодного гомогеного темплатного осадження . Eastern-European Journal of Enterprise Technologies, 2(6 (110), 45–51. https://doi.org/10.15587/1729-4061.2021.227952

Номер

Розділ

Технології органічних та неорганічних речовин