Програмна діагностика газоперекачувального агрегата на основі нейронної мережі прямого поширення

Автор(и)

  • Микола Іванович Козленко Прикарпатський національний університет імені Василя Стефаника, Україна https://orcid.org/0000-0002-2502-2447
  • Олена Леонідівна Заміховська Івано-Франківський національний технічний університет нафти і газу, Україна https://orcid.org/0000-0003-0775-0472
  • Леонід Михайлович Заміховський Івано-Франківський національний технічний університет нафти і газу, Україна https://orcid.org/0000-0002-6374-8580

DOI:

https://doi.org/10.15587/1729-4061.2021.229859

Ключові слова:

газоперекачувальний агрегат, технічний стан, діагностування, класифікація, штучна нейромережа, глибинне навчання

Анотація

В останні роки все більшої уваги приділяється використанню штучних нейронних мереж (ШНМ) для діагностики газоперекачувальних агрегатів (ГПА). Зазвичай навчання ШНМ проводять на моделях робочих процесів ГПА, а для моделювання дефектних станів використовуються згенеровані набори діагностичних даних. При цьому отримані результати не дозволяють оцінити реальний стан ГПА. Запропоновано як вхідні дані ШНМ використати значення характеристик акустичних і вібраційних процесів ГПА.

Проведено дескриптивний статистичний аналіз реальних вібраційних і акустичних процесів, згенерованих роботою ГПА типу ГТК-25і (GE Nuovo Pignone, Італія). Здійснено формування пакетів діагностичних ознак, що надходять на вхід ШНМ. Діагностичними ознаками є п’ять максимальних амплітудних складових акустичного та вібраційного сигналів, а також значення стандартного відхилення для кожної вибірки. Діагностичні ознаки обчислюються безпосередньо у вхідному конвеєрі даних ШНМ в реальному часі для трьох технічних станів ГПА.

З використанням фреймворків TensorFlow, Keras, NumPy, pandas мовою програмування Python 3 розроблено архітектуру глибинної повнозв’язної ШНМ прямого поширення, що тренуються за алгоритмом зворотного поширення помилки.

Наводяться результати навчання та тестування розробленої ШНМ. Під час тестування встановлено, що точність розпізнавання сигналів для стану «номінальний» з усіх 1475 зразків сигналів становить precision=1.0000, для стану «поточний» precision=0.9853 і для стану «дефектний» – precision=0.9091.

Використання розробленої ШНМ дає можливість класифікації технічних станів ГПА з достатньою для практичного застосування точністю, що дозволить попередити виникнення відмов ГПА. ШНМ може бути використана для діагностування ГПА будь-якого типу та потужності

Біографії авторів

Микола Іванович Козленко, Прикарпатський національний університет імені Василя Стефаника

Кандидат технічних наук, доцент

Кафедра інформаційних технологій

Олена Леонідівна Заміховська, Івано-Франківський національний технічний університет нафти і газу

Кандидатка технічних наук, доцентка

Кафедра інформаційно-телекомунікаційних технологій та систем

Леонід Михайлович Заміховський, Івано-Франківський національний технічний університет нафти і газу

Доктор технічних наук, професор

Кафедра інформаційно-телекомунікаційних технологій та систем

Посилання

  1. Kharakterystyka hazotransportnoi systemy Ukrainy. AT "Ukrtranshaz". Available at: http://utg.ua/utg/psg/description/
  2. Zamikhovsky, L., Zamikhovska, O., Ivanyuk, N. (2021). Trends in the development of methods for diagnostics of the technical state of the blades of gas-pumping units. ScienceRise, 1, 33–40. doi: https://doi.org/10.21303/2313-8416.2021.001678
  3. Gorbiychuk, M., Zamikhovska, O., Zamikhovsky, L., Pavlyk, V. (2020). Development of the method for estimating the technical condition of gas pumping units by their accelerating characteristic. Eastern-European Journal of Enterprise Technologies, 3 (2 (105)), 48–57. doi: https://doi.org/10.15587/1729-4061.2020.206476
  4. Arriagada, J., Genrup, M., Assadi, M., Loberg, A. (2003). Fault Diagnosis System for an Industrial Gas Turbine by Means of Neural Networks. Proceedings of International Gas Turbine. Tokyo.
  5. Zhou, D., Yao, Q., Wu, H., Ma, S., Zhang, H. (2020). Fault diagnosis of gas turbine based on partly interpretable convolutional neural networks. Energy, 200, 117467. doi: https://doi.org/10.1016/j.energy.2020.117467
  6. Alozie, O., Li, Y.-G., Pilidis, P., Liu, Y., Wu, X., Shong, X. et. al. (2020). An Integrated Principal Component Analysis, Artificial Neural Network and Gas Path Analysis Approach for Multi-Component Fault Diagnostics of Gas Turbine Engines. Volume 5: Controls, Diagnostics, and Instrumentation; Cycle Innovations; Cycle Innovations: Energy Storage. doi: https://doi.org/10.1115/gt2020-15740
  7. De Giorgi, M. G., Ficarella, A., De Carlo, L. (2019). Jet engine degradation prognostic using artificial neural networks. Aircraft Engineering and Aerospace Technology, 92 (3), 296–303. doi: https://doi.org/10.1108/aeat-01-2018-0054
  8. Amare, D. F., Aklilu, T. B., Gilani, S. I. (2018). Gas path fault diagnostics using a hybrid intelligent method for industrial gas turbine engines. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40 (12). doi: https://doi.org/10.1007/s40430-018-1497-6
  9. Zhang, Y., Qian, Y., Qiu, Z., Zhang, X. (2018). Fault Diagnosis of Gas Turbine Based on Improved BP Neural Network with the Combination of N-W and L-M Algorithm. IOP Conference Series: Earth and Environmental Science, 192, 012015. doi: https://doi.org/10.1088/1755-1315/192/1/012015
  10. Ben Rahmoune, M., Hafaifa, A., Kouzou, A., Guemana, M., Abudura, S. (2016). Control and diagnostic of vibration in gas turbine system using neural network approach. 2016 8th International Conference on Modelling, Identification and Control (ICMIC). doi: https://doi.org/10.1109/icmic.2016.7804177
  11. Allen, C. W., Holcomb, C. M., de Oliveira, M. (2017). Gas Turbine Machinery Diagnostics: A Brief Review and a Sample Application. Volume 6: Ceramics; Controls, Diagnostics and Instrumentation; Education; Manufacturing Materials and Metallurgy. doi: https://doi.org/10.1115/gt2017-64755
  12. Hanachi, H., Liu, J., Mechefske, C. (2018). Multi-mode diagnosis of a gas turbine engine using an adaptive neuro-fuzzy system. Chinese Journal of Aeronautics, 31 (1), 1–9. doi: https://doi.org/10.1016/j.cja.2017.11.017
  13. Zamikhovskyi, L. М., Zamikhovska, О. L., Ivaniuk, N. І., Pavlyk, V. V. (2020). Improvement of the automatic control system of gas-pumping units taking into account their technical condition. Oil and Gas Power Engineering, 2 (34), 84–95. doi: https://doi.org/10.31471/1993-9868-2020-2(34)-84-95
  14. Thode, H. C. (2002). Testing For Normality. CRC Press, 368. doi: https://doi.org/10.1201/9780203910894
  15. Barrett, P., Hunter, J., Miller, J. T., Hsu, J.-C., Greenfield, P. (2005). matplotlib - A Portable Python Plotting Package Astronomical Data Analysis Software and Systems XIV ASP Conference Series. Vol. 347. Pasadena, California, 91–95. Available at: http://adsabs.harvard.edu/pdf/2005ASPC..347...91B
  16. Razali, N. M., Wah, Y. B. (2011). Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling and Analytics, 2 (1), 21–33. Available at: https://www.nrc.gov/docs/ML1714/ML17143A100.pdf
  17. Williamson, D. F. (1989). The Box Plot: A Simple Visual Method to Interpret Data. Annals of Internal Medicine, 110 (11), 916. doi: https://doi.org/10.7326/0003-4819-110-11-916
  18. Takahashi, D. (2019). Fast Fourier Transform. Fast Fourier Transform Algorithms for Parallel Computers, 5–13. doi: https://doi.org/10.1007/978-981-13-9965-7_2
  19. Kessler, T., Dorian, G., Mack, J. H. (2017). Application of a Rectified Linear Unit (ReLU) Based Artificial Neural Network to Cetane Number Predictions. Volume 1: Large Bore Engines; Fuels; Advanced Combustion. doi: https://doi.org/10.1115/icef2017-3614
  20. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J. et. al. (2016). Tensorflow: A system for large-scale machine learning. 12th USENIX Symposium on Operating Systems Design and Implementation. Savannah, 265–283. Available at: https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
  21. Manaswi, N. K. (2018). Understanding and Working with Keras. Deep Learning with Applications Using Python, 31–43. doi: https://doi.org/10.1007/978-1-4842-3516-4_2
  22. Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D. et. al. (2020). Array programming with NumPy. Nature, 585 (7825), 357–362. doi: https://doi.org/10.1038/s41586-020-2649-2
  23. McKinney, W. (2010). Data Structures for Statistical Computing in Python. Proceedings of the 9th Python in Science Conference. doi: https://doi.org/10.25080/majora-92bf1922-00a
  24. Millman, K. J., Aivazis, M. (2011). Python for Scientists and Engineers. Computing in Science & Engineering, 13 (2), 9–12. doi: https://doi.org/10.1109/mcse.2011.36
  25. Kozlenko, M., Vialkova, V. (2020). Software Defined Demodulation of Multiple Frequency Shift Keying with Dense Neural Network for Weak Signal Communications. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). doi: https://doi.org/10.1109/tcset49122.2020.235501
  26. Kozlenko, M., Lazarovych, I., Tkachuk, V., Vialkova, V. (2020). Software Demodulation of Weak Radio Signals using Convolutional Neural Network. 2020 IEEE 7th International Conference on Energy Smart Systems (ESS). doi: https://doi.org/10.1109/ess50319.2020.9160035
  27. Zhang, Z. (2018). Improved Adam Optimizer for Deep Neural Networks. 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS). doi: https://doi.org/10.1109/iwqos.2018.8624183
  28. Melnychuk, S., Lazarovych, I., Kozlenko, M. (2018). Optimization of entropy estimation computing algorithm for random signals in digital communication devices. 2018 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET). doi: https://doi.org/10.1109/tcset.2018.8336380
  29. Swets, J. (1988). Measuring the accuracy of diagnostic systems. Science, 240 (4857), 1285–1293. doi: https://doi.org/10.1126/science.3287615
  30. Zhen, Z., Quackenbush, L. J., Stehman, S. V., Zhang, L. (2013). Impact of training and validation sample selection on classification accuracy and accuracy assessment when using reference polygons in object-based classification. International Journal of Remote Sensing, 34 (19), 6914–6930. doi: https://doi.org/10.1080/01431161.2013.810822
  31. Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T. et. al. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods, 17 (3), 261–272. doi: https://doi.org/10.1038/s41592-019-0686-2
  32. Ioffe, S., Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. Proceedings of the 32nd International Conference on Machine Learning, 448–456. URL: https://arxiv.org/abs/1502.03167

##submission.downloads##

Опубліковано

2021-04-30

Як цитувати

Козленко, М. І., Заміховська, О. Л., & Заміховський, Л. М. (2021). Програмна діагностика газоперекачувального агрегата на основі нейронної мережі прямого поширення. Eastern-European Journal of Enterprise Technologies, 2(2 (110), 99–109. https://doi.org/10.15587/1729-4061.2021.229859