Короткостроковий прогноз пожежі в приміщенні на основі модифікації моделі Брауна нульового порядку
DOI:
https://doi.org/10.15587/1729-4061.2021.238555Ключові слова:
прогнозування пожежі, модифікація моделі Брауна, загоряння, міра поточної рекурентності, прирощення вектора стануАнотація
Виконано обґрунтування модифікації моделі Брауна нульового порядку, що забезпечує підвищену точність короткострокового прогнозу пожежі на основі використання поточної міри рекурентності прирощення стану повітряного середовища в приміщенні. Особливість запропонованої модифікації моделі полягає в тому, що видозмінено апріорну модель динаміки рівня часового ряду міри поточної рекурентності прирощень станів повітряного середовища, яка визначається небезпечними факторами пожежі. При цьому пропонується в новій апріорній моделі враховувати додатково величину поточних приростів рівня досліджуваного часового ряду. Це дозволяє зробити пренебрежимо малими помилки короткострокового прогнозу пожежі в приміщенні без істотного ускладнення моделі Брауна нульового порядку, зберігши при цьому всі її реалізаційні переваги. Досліджена забезпечувана точність прогнозу на один крок вперед на основі часового ряду міри поточної рекурентності прирощень стану повітряного середовища, визначеного за експериментальними даними при загорянні спирту і деревини в лабораторній камері. В якості кількісних показників точності прогнозу розглянуті експоненціально згладжені з параметром 0,4 абсолютні і середні помилки. Встановлено, що для пропонованої модифікації величина середньої абсолютної помилки не перевищує 0,02 %. Це означає, що помилка короткострокового прогнозу пожежі в приміщенні на основі запропонованої модифікації забезпечується меншою на порядок в порівнянні з випадком використання відомої моделі Брауна при параметрі згладжування з позамежної множини. Отримані результати для загоряння спирту і деревини в лабораторній камері в цілому свідчать про суттєві переваги використання для короткострокового прогнозу пожежі в приміщенні запропонованої модифікації моделі Брауна нульового порядку
Посилання
- Kustov, M. V., Kalugin, V. D., Tutunik, V. V., Tarakhno, E. V. (2019). Physicochemical principles of the technology of modified pyrotechnic compositions to reduce the chemical pollution of the atmosphere. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 92–99. doi: https://doi.org/10.32434/0321-4095-2019-122-1-92-99
- Migalenko, K., Nuianzin, V., Zemlianskyi, A., Dominik, A., Pozdieiev, S. (2018). Development of the technique for restricting the propagation of fire in natural peat ecosystems. Eastern-European Journal of Enterprise Technologies, 1 (10 (91)), 31–37. doi: https://doi.org/10.15587/1729-4061.2018.121727
- Vambol, S., Vambol, V., Kondratenko, O., Koloskov, V., Suchikova, Y. (2018). Substantiation of expedience of application of high-temperature utilization of used tires for liquefied methane production. Journal of Achievements in Materials and Manufacturing Engineering, 2 (87), 77–84. doi: https://doi.org/10.5604/01.3001.0012.2830
- Vambol, S., Vambol, V., Sobyna, V., Koloskov, V., Poberezhna, L. (2018). Investigation of the energy efficiency of waste utilization technology, with considering the use of low-temperature separation of the resulting gas mixtures. Energetika, 64 (4). doi: https://doi.org/10.6001/energetika.v64i4.3893
- Semko, A., Rusanova, O., Kazak, O., Beskrovnaya, M., Vinogradov, S., Gricina, I. (2015). The use of pulsed high-speed liquid jet for putting out gas blow-out. The International Journal of Multiphysics, 9 (1), 9–20. doi: https://doi.org/10.1260/1750-9548.9.1.9
- Vambol, S., Vambol, V., Kondratenko, O., Suchikova, Y., Hurenko, O. (2017). Assessment of improvement of ecological safety of power plants by arranging the system of pollutant neutralization. Eastern-European Journal of Enterprise Technologies, 3 (10 (87)), 63–73. doi: https://doi.org/10.15587/1729-4061.2017.102314
- Otrosh, Y., Kovalov, A., Semkiv, O., Rudeshko, I.,Diven, V. (2018). Methodology remaining lifetime determination of the building structures. MATEC Web of Conferences, 230, 02023. doi: https://doi.org/10.1051/matecconf/201823002023
- Vasyukov, A., Loboichenko, V., Bushtec, S. (2016). Identification of bottled natural waters by using direct conductometry. Ecology, Environment and Conservation, 22 (3), 1171–1176.
- Ahrens, M., Evarts, B. (2020). Fire loss in the United States during 2019. National Fire Protection Association, 11. Available at: https://www.nfpa.org/~/media/fd0144a044c84fc5baf90c05c04890b7.ashx
- Koshmarov, Yu. A., Puzach, S. V., Andreev, V. V. (2012). Prognozirovanie opasnyh faktorov pozhara v pomeschenii. Moscow: AGPS MChS Rossii, 126.
- Otrosh, Y., Semkiv, O., Rybka, E., Kovalov, A. (2019). About need of calculations for the steel framework building in temperature influences conditions. IOP Conference Series: Materials Science and Engineering, 708, 012065. doi: https://doi.org/10.1088/1757-899x/708/1/012065
- Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Borodych, P. (2018). Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises. Eastern-European Journal of Enterprise Technologies, 3 (9 (93)), 34–40. doi: https://doi.org/10.15587/1729-4061.2018.133127
- Andronov, V., Pospelov, B., Rybka, E., Skliarov, S. (2017). Examining the learning fire detectors under real conditions of application. Eastern-European Journal of Enterprise Technologies, 3 (9 (87)), 53–59. doi: https://doi.org/10.15587/1729-4061.2017.101985
- Ahn, C.-S., Kim, J.-Y. (2011). A study for a fire spread mechanism of residential buildings with numerical modeling. Safety and Security Engineering IV. doi: https://doi.org/10.2495/safe110171
- Webber,, C. L., Ioana, C., Marwan, N. (Eds.) (2016). Recurrence plots and their quantifications: expanding horizons. International Symposium on Recurrence Plots. Grenoble, 380. doi: https://doi.org/10.1007/978-3-319-29922-8
- Sadkovyi, V., Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Rud, A. et. al. (2020). Construction of a method for detecting arbitrary hazard pollutants in the atmospheric air based on the structural function of the current pollutant concentrations. Eastern-European Journal of Enterprise Technologies, 6 (10 (108)), 14–22. doi: https://doi.org/10.15587/1729-4061.2020.218714
- Turcotte, D. L. (1997). Fractals and chaos in geology and geophysics. Cambridge University Press. doi: https://doi.org/10.1017/cbo9781139174695
- Poulsen, A., Jomaas, G. (2011). Experimental Study on the Burning Behavior of Pool Fires in Rooms with Different Wall Linings. Fire Technology, 48 (2), 419–439. doi: https://doi.org/10.1007/s10694-011-0230-0
- Zhang, D., Xue, W. (2010). Effect of heat radiation on combustion heat release rate of larch. Journal of West China Forestry Science, 39, 148.
- Ji, J., Yang, L., Fan, W. (2003). Experimental Study on Effects of Burning Behaviours of Materials Caused by External Heat Radiation. Journal of Combustion Science and Technology, 9, 139.
- Peng, X., Liu, S., Lu, G. (2005). Experimental Analysis on Heat Release Rate of Materials. Journal of Chongqing University, 28, 122.
- Andronov, V., Pospelov, B., Rybka, E. (2017). Development of a method to improve the performance speed of maximal fire detectors. Eastern-European Journal of Enterprise Technologies, 2 (9 (86)), 32–37. doi: https://doi.org/10.15587/1729-4061.2017.96694
- Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Gornostal, S. (2018). Analysis of correlation dimensionality of the state of a gas medium at early ignition of materials. Eastern-European Journal of Enterprise Technologies, 5 (10 (95)), 25–30. doi: https://doi.org/10.15587/1729-4061.2018.142995
- Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Design of fire detectors capable of self-adjusting by ignition. Eastern-European Journal of Enterprise Technologies, 4 (9 (88)), 53–59. doi: https://doi.org/10.15587/1729-4061.2017.108448
- Pospelov, B., Rybka, E., Meleshchenko, R., Gornostal, S., Shcherbak, S. (2017). Results of experimental research into correlations between hazardous factors of ignition of materials in premises. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 50–56. doi: https://doi.org/10.15587/1729-4061.2017.117789
- Bendat, J. S., Piersol, A. G. (2010). Random data: analysis and measurement procedures. John Wiley & Sons. doi: https://doi.org/10.1002/9781118032428
- Shafi, I., Ahmad, J., Shah, S. I., Kashif, F. M. (2009). Techniques to Obtain Good Resolution and Concentrated Time-Frequency Distributions: A Review. EURASIP Journal on Advances in Signal Processing, 2009 (1). doi: https://doi.org/10.1155/2009/673539
- Singh, P. (2016). Time-frequency analysis via the fourier representation. HAL, 1–8. Available at: https://hal.archives-ouvertes.fr/hal-01303330/document
- Pretrel, H., Querre, P., Forestier, M. (2005). Experimental Study Of Burning Rate Behaviour In Confined And Ventilated Fire Compartments. Fire Safety Science, 8, 1217–1228. doi: https://doi.org/10.3801/iafss.fss.8-1217
- Pospelov, B., Andronov, V., Rybka, E., Popov, V., Romin, A. (2018). Experimental study of the fluctuations of gas medium parameters as early signs of fire. Eastern-European Journal of Enterprise Technologies, 1 (10 (91)), 50–55. doi: https://doi.org/10.15587/1729-4061.2018.122419
- Stankovic, L., Dakovic, M., Thayaparan, T. (2014). Time-frequency signal analysis. Kindle edition, 655.
- Avargel, Y., Cohen, I. (2010). Modeling and Identification of Nonlinear Systems in the Short-Time Fourier Transform Domain. IEEE Transactions on Signal Processing, 58 (1), 291–304. doi: https://doi.org/10.1109/tsp.2009.2028978
- Giv, H. H. (2013). Directional short-time Fourier transform. Journal of Mathematical Analysis and Applications, 399 (1), 100–107. doi: https://doi.org/10.1016/j.jmaa.2012.09.053
- Pospelov, B., Andronov, V., Rybka, E., Popov, V., Semkiv, O. (2018). Development of the method of frequencytemporal representation of fluctuations of gaseous medium parameters at fire. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 44–49. doi: https://doi.org/10.15587/1729-4061.2018.125926
- Pospelov, B., Andronov, V., Rybka, E., Samoilov, M., Krainiukov, O., Biryukov, I. et. al. (2021). Development of the method of operational forecasting of fire in the premises of objects under real conditions. Eastern-European Journal of Enterprise Technologies, 2 (10 (110)), 43–50. doi: https://doi.org/10.15587/1729-4061.2021.226692
- Sinaga, H., Irawati, N. (2020). A Medical Disposable Supply Demand Forecasting By Moving Average And Exponential Smoothing Method. Proceedings of the Proceedings of the 2nd Workshop on Multidisciplinary and Applications (WMA) 2018, 24-25 January 2018, Padang, Indonesia. doi: https://doi.org/10.4108/eai.24-1-2018.2292378
- Svetun'kov, S. G. (2002). O rasshirenii granits primeneniya metoda Brauna. Izvestiya Sankt-Peterburgskogo gosudarstvennogo universiteta ekonomiki i finansov, 3, 94–107.
- Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Biryukov, I., Butenko, T. et. al. (2021). Short-term fire forecast based on air state gain recurrence and zero-order Brown model. Eastern-European Journal of Enterprise Technologies, 3 (10 (111)), 27–33. doi: https://doi.org/10.15587/1729-4061.2021.233606
- Chetyrkin, E. M. (1977). Statisticheskie metody prognozirovaniya. Moscow: Statistika, 200.
- Marwan, N. (2011). How to avoid potential pitfalls in recurrence plot based data analysis. International Journal of Bifurcation and Chaos, 21 (04), 1003–1017. doi: https://doi.org/10.1142/s0218127411029008
- Webber, Jr. C. L., Zbilut, J. P.; Riley, M. A., Van Orden, G. C. (Eds.) (2005). Chapter 2. Recurrence quantification analysis of nonlinear dynamical systems. Tutorials in contemporary nonlinear methods for the behavioral sciences, 26–94. Available at: https://www.nsf.gov/pubs/2005/nsf05057/nmbs/nmbs.pdf
- Orlova, I. V., Polovnikov, V. A. (2010). Ekonomiko-matematicheskie metody i modeli: komp'yuternoe modelirovanie. Moscow: INFRA-M, 366.
- Pospelov, B., Rybka, E., Togobytska, V., Meleshchenko, R., Danchenko, Y., Butenko, T. et. al. (2019). Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots. Eastern-European Journal of Enterprise Technologies, 4 (10 (100)), 22–29. doi: https://doi.org/10.15587/1729-4061.2019.176579
- Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Karpets, K., Pirohov, O. et. al. (2019). Development of the correlation method for operative detection of recurrent states. Eastern-European Journal of Enterprise Technologies, 6 (4 (102)), 39–46. doi: https://doi.org/10.15587/1729-4061.2019.187252
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2021 Boris Pospelov, Evgenіy Rybka, Olekcii Krainiukov, Oleksandr Yashchenko, Yuliia Bezuhla, Serhii Bielai, Eduard Kochanov, Svitlana Hryshko, Eduard Poltavski, Oleksandr Nepsha
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.