Термічна деструкція полімерів: аналіз фізико-хімічних показників процесу
DOI:
https://doi.org/10.15587/1729-4061.2021.238952Ключові слова:
тверді побутові відходи, деструкція, піроліз, синтез-газ, вуглеводні, полімериАнотація
Експериментальними дослідженнями підтверджено, що при термічному розкладанні зразків полімерних відходів при рівні температур, інсинераторів 850 °С, без доступу кисню, відбувається падіння маси цих відходів із виділенням великого об’єму газоподібних продуктів. Дану особливість слід неодмінно враховувати при інженерних розрахунках реакційних камер, реакторів та з’єднувальних газоходів. Аналітичні дослідження проведено методом термодинамічного аналізу з використанням універсального розрахункового комплексу Астра (TERRA). Показано, що при збільшенні температури реакції відбувається зміна складу продуктів термічної деструкції полімерних відходів шляхом зменшення мольної частки СН4 та збільшення частки Н2. Розрахунок теплотворної здатності виконувався за емпіричною формулою Менделеєва. Експериментальними дослідженнями (методом піроліз-газової хроматографії) підтверджено результати розрахунків щодо збільшення частки водню в газоподібних продуктах деструкції при збільшенні температури процесу. В результаті, за рахунок меншої об’ємної теплоти згорання водню, загальна калорійність отриманого синтез-газу суттєво зменшується. Для здійснення експериментів побудовано лабораторну установку низькотемпературного піролізу полімерів з зовнішнім підведенням теплової енергії, причому в якості енергоносія використано синтез-газ.
На дослідно-промисловій установці методом низькотемпературного піролізу отримано синтез-газ стабільного складу з нижчою теплотою згоряння 24,8 кДж/м3. Показано достовірність результатів запропонованого розрахункового методу результатам інструментальних замірів.
Визначені перспективні напрямки подальших досліджень, в тому числі: оптимізації процесів термічної деструкції хлорвмісних полімерних відходів; ефективного використання водню зі складу отриманого синтез-газу
Посилання
- Martignon, G. P.; Johansson, I., Edo, M. (Eds.) (2020). Report on Trends in the use of solid recovered fuels. IEA Bioenergy. Available at: https://www.ieabioenergy.com/wp-content/uploads/2020/05/Trends-in-use-of-solid-recovered-fuels-Main-Report-Task36.pdf
- Plastics - the Facts 2020. PlasticsEurope. Available at: https://www.plasticseurope.org/application/files/5716/0752/4286/AF_Plastics_the_facts-WEB-2020-ING_FINAL.pdf
- Ciuffi, B., Chiaramonti, D., Rizzo, A. M., Frediani, M., Rosi, L. (2020). A Critical Review of SCWG in the Context of Available Gasification Technologies for Plastic Waste. Applied Sciences, 10 (18), 6307. doi: https://doi.org/10.3390/app10186307
- Comanita, E.-D., Hlihor, R. M., Ghinea, C., Gavrilescu, M. (2016). Occurrence of plastic waste in the environment: ecological and health risks. Environmental Engineering and Management Journal, 15 (3), 675–685. doi: https://doi.org/10.30638/eemj.2016.073
- Singh, D., Sotiriou, G. A., Zhang, F., Mead, J., Bello, D., Wohlleben, W., Demokritou, P. (2016). End-of-life thermal decomposition of nano-enabled polymers: effect of nanofiller loading and polymer matrix on by-products. Environmental Science: Nano, 3 (6), 1293–1305. doi: https://doi.org/10.1039/c6en00252h
- Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A European Strategy for Plastics in a Circular Economy (2018). COM/2018/028 final. European Commission. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2018:28:FIN
- Saebea, D., Ruengrit, P., Arpornwichanop, A., Patcharavorachot, Y. (2020). Gasification of plastic waste for synthesis gas production. Energy Reports, 6, 202–207. doi: https://doi.org/10.1016/j.egyr.2019.08.043
- Wróblewska-Krepsztul, J., Rydzkowski, T. (2020). Pyrolysis and incineration in polymer waste management system. Journal of Mechanical and Energy Engineering, 3 (4), 337–342. doi: https://doi.org/10.30464/jmee.2019.3.4.337
- Posada, E., Saenz, G. (2019). Waste to Energy and Syngas. Sustainable Alternative Syngas Fuel [Working Title]. doi: https://doi.org/10.5772/intechopen.85848
- Fedorov, L. A. (1993). Dioksiny kak ekologicheskaya opasnost': Retrospektiva i perspektivy. Moscow: Nauka, 266.
- Karp, I. N., Vasechko, A. A., Alekseenko, V. V., Sezonenko, A. B. (2011). Tekhnologii utilizatsii meditsinskih othodov. Energotekhnologii i resursosberezhenie, 3, 43–48.
- Vasechko, O. O., Sezonenko, O. B., Aleksieienko, V. V., Samokatov, K. A. (2019). Utylizatsiya polimernykh ta ridkykh medychnykh spyrtomisnykh vidkhodiv. Zb. tez XXXVII naukovo-tekhnichnoi konferentsiyi molodykh vchenykh ta spetsialistiv Instytutu problem modeliuvannia v enerhetytsi im. H.Ye. Pukhova NAN Ukrainy. Kyiv, 73–75. Available at: https://ipme.kiev.ua/wp-content/uploads/2019/05/%D0%9C%D0%B0%D1%82%D0%B5%D1%80%D1%96%D0%B0%D0%BB%D0%B8-%D0%BA%D0%BE%D0%BD%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D1%96%D1%97-2019.pdf
- Aleksieienko, V. V., Vasechko, O. O., Sezonenko, O. B. (2021). Pat. No. 148052. Ustanovka dlia utylizatsiyi vidkhodiv, shcho mistiat vuhlevoden. No. u202100537; declareted: 09.02.2021; published: 30.06.2021, Bul. No. 26. Available at: https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=276891&sid=678651d55fe4935ea5ae1eeea0b1fa15
- Ustinov, V. A., Kozlita, A. N., Lyulkin, M. S. (2011). Accounting chemistry of the process when selecting the temperature regime in the pyrolysis unit. Elektronniy nauchniy zhurnal «Neftegazovoe delo», 3, 208–214. Available at: https://pdf.zlibcdn.com/dtoken/472649e9e9385da0fe9731b14041ee6d/Vuebor_temperaturnogo_rezhima_v_apparate_piroliza__3184328_(z-lib.org).pdf
- PSA Hydrogen Purification Plants | Mahler AGS. Available at: https://www.mahler-ags.com/hydrogen/hydroswing/
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2021 Oleksii Sezonenko, Oleksii Vasechko, Viktor Aleksyeyenko
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.