Розробка методики структурно-параметричної оцінки стану об’єкту
DOI:
https://doi.org/10.15587/1729-4061.2021.240178Ключові слова:
штучні нейронні мережі, навчання нейронних мереж, модифікований алгоритм еволюційних стратегійАнотація
Проведено розробку методики структурно-параметричної оцінки стану об’єкту. Сутність методики полягає в забезпеченні аналізу поточного стану об’єкту, що аналізується. Ключовою відмінністю розробленої методики, є використання удосконалених процедур оброблення невизначених вихідних даних, селекції, схрещування, мутації, формування початкової популяції, удосконаленої процедури навчання штучних нейронних мереж та округлення координат. Використання методики структурно-параметричної оцінки стану об’єкту дозволяє підвищити оперативність оцінки стану об’єкту. Об’єктивний та повний аналіз досягається використанням удосконаленого алгоритму еволюційних стратегій. Сутність процедури навчання полягає в тому, що відбувається навчання синаптичних ваг штучної нейронної мережі, типу та параметрів функції належності, а також архітектури окремих елементів і архітектури штучної нейронної мережі в цілому. Наведений приклад використання запропонованої методики на прикладі оцінки стану оперативної обстановки угруповання війсь (сил). Розроблена методика має на 30–35 % більшу ефективність за критерієм придатності отриманого рішення в порівнянні з класичним алгоритмом еволюційних стратегій. Також запропонована методика є кращою на 20–25 % у порівнянні з модифікованими алгоритмами еволюційних стратегій за рахунок використання додаткових удосконалених процедур за критерієм придатності отриманого рішення. Пропонується використання запропонованої методики в системах підтримки прийняття рішень автоматизованих систем управління (СППР АСУ) артилерійськими підрозділами, геоінформаційних систем спеціального призначення). Також можливо використання СППР АСУ авіацією та протиповітряної оборони, СППР АСУ логістичного забезпечення Збройних Сил України
Посилання
- Shyshatskyi, A. V., Bashkyrov, O. M., Kostyna, O. M. (2015). Development of integrated communication systems and data transfer for the needs of the Armed Forces. Weapons and military equipment, 1, 35–39.
- Dudnyk, V., Sinenko, Y., Matsyk, M., Demchenko, Y., Zhyvotovskyi, R., Repilo, I. et. al. (2020). Development of a method for training artificial neural networks for intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (2 (105)), 37–47. doi: https://doi.org/10.15587/1729-4061.2020.203301
- Kuchuk, N., Mohammed, A. S., Shyshatskyi, A., Nalapko, O. (2019). The method of improving the efficiency of routes selection in networks of connection with the possibility of self-organization. International Journal of Advanced Trends in Computer Science and Engineering, 8 (1.2), 1–6. Available at: http://www.warse.org/IJATCSE/static/pdf/file/ijatcse01812sl2019.pdf
- Pievtsov, H., Turinskyi, O., Zhyvotovskyi, R., Sova, O., Zvieriev, O., Lanetskii, B., Shyshatskyi, A. (2020). Development of an advanced method of finding solutions for neuro-fuzzy expert systems of analysis of the radioelectronic situation. EUREKA: Physics and Engineering, 4, 78–89. doi: https://doi.org/10.21303/2461-4262.2020.001353
- Zuiev, P., Zhyvotovskyi, R., Zvieriev, O., Hatsenko, S., Kuprii, V., Nakonechnyi, O. et. al. (2020). Development of complex methodology of processing heterogeneous data in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 4 (9 (106)), 14–23. doi: https://doi.org/10.15587/1729-4061.2020.208554
- Shyshatskyi, A., Zvieriev, O., Salnikova, O., Demchenko, Y., Trotsko, O., Neroznak, Y. (2020). Complex Methods of Processing Different Data in Intellectual Systems for Decision Support System. International Journal of Advanced Trends in Computer Science and Engineering, 9 (4), 5583–5590. doi: https://doi.org/10.30534/ijatcse/2020/206942020
- Sova, O., Shyshatskyi, A., Salnikova, O., Zhuk, O., Trotsko, O., Hrokholskyi, Y. (2021). Development of a method for assessment and forecasting of the radio electronic environment. EUREKA: Physics and Engineering, 4, 30–40. doi: https://doi.org/10.21303/2461-4262.2021.001940
- Rodrigues, E., Gaspar, A. R., Gomes, Á. (2013). An evolutionary strategy enhanced with a local search technique for the space allocation problem in architecture, Part 2: Validation and performance tests. Computer-Aided Design, 45 (5), 898–910. doi: https://doi.org/10.1016/j.cad.2013.01.003
- Guerrero-Peña, E., Araújo, A. F. R. (2021). Dynamic multi-objective evolutionary algorithm with objective space prediction strategy. Applied Soft Computing, 107, 107258. doi: https://doi.org/10.1016/j.asoc.2021.107258
- Pérez-González, C. J., Colebrook, M., Roda-García, J. L., Rosa-Remedios, C. B. (2019). Developing a data analytics platform to support decision making in emergency and security management. Expert Systems with Applications, 120, 167–184. doi: https://doi.org/10.1016/j.eswa.2018.11.023
- Massel, L. V., Gerget, O. M., Massel, A. G., Mamedov, T. G. (2019). The Use of Machine Learning in Situational Management in Relation to the Tasks of the Power Industry. EPJ Web of Conferences, 217, 01010. doi: https://doi.org/10.1051/epjconf/201921701010
- Abaci, K., Yamacli, V. (2019). Hybrid Artificial Neural Network by Using Differential Search Algorithm for Solving Power Flow Problem. Advances in Electrical and Computer Engineering, 19 (4), 57–64. doi: https://doi.org/10.4316/aece.2019.04007
- Osman, A. M. S. (2019). A novel big data analytics framework for smart cities. Future Generation Computer Systems, 91, 620–633. doi: https://doi.org/10.1016/j.future.2018.06.046
- Mishchuk, O. S., Vitynskyi, P. B. (2018). Neural Network with Combined Approximation of the Surface of the Response. Research Bulletin of the National Technical University of Ukraine “Kyiv Politechnic Institute”, 2, 18–24. doi: https://doi.org/10.20535/1810-0546.2018.2.129022
- Kazemi, M., Faezirad, M. (2018). Efficiency estimation using nonlinear influences of time lags in DEA Using Artificial Neural Networks. Industrial Management Journal, 10 (1), 17–34. doi: https://doi.org/10.22059/imj.2018.129192.1006898
- Prokoptsev, N. G., Alekseenko, A. E., Kholodov, Y. A. (2018). Traffic flow speed prediction on transportation graph with convolutional neural networks. Computer Research and Modeling, 10 (3), 359–367. doi: https://doi.org/10.20537/2076-7633-2018-10-3-359-367
- Wu, M., Zhu, X., Ma, L., Wang, J., Bao, W., Li, W., Fan, Z. (2021). Torch: Strategy evolution in swarm robots using heterogeneous–homogeneous coevolution method. Journal of Industrial Information Integration, 100239. doi: https://doi.org/10.1016/j.jii.2021.100239
- Li, Z., Lin, X., Zhang, Q., Liu, H. (2020). Evolution strategies for continuous optimization: A survey of the state-of-the-art. Swarm and Evolutionary Computation, 56, 100694. doi: https://doi.org/10.1016/j.swevo.2020.100694
- Rybak, V. A., Shokr, A. (2016). Analysis and comparison of existing decision support technology. System analysis and applied information science, 3, 12–18.
- Poloziuk, K., Yaremenko, V. (2020). Neural networks and Monte-Carlo method usage in multi-agent systems for sudoku problem solving. Technology Audit and Production Reserves, 6 (2 (56)), 38–41. doi: https://doi.org/10.15587/2706-5448.2020.218427
- Аkanova, A., Kaldarova, M. (2020). Impact of the compilation method on determining the accuracy of the error loss in neural network learning. Technology Audit and Production Reserves, 6 (2 (56)), 34–37. doi: https://doi.org/10.15587/2706-5448.2020.217613
- Leoshchenko, S., Oliinyk, A., Subbotin, S., Zaiko, T. (2020). Usage of swarm intelligence strategies during projection of parallel neuroevolution methods for neuromodel synthesis. Technology Audit and Production Reserves, 5 (2 (55)), 12–17. doi: https://doi.org/10.15587/2706-5448.2020.214769
- Yaremenko, V., Syrotiuk, O. (2020). Development of a multi-agent system for solving domain dictionary construction problem. Technology Audit and Production Reserves, 4 (2 (54)), 27–30. doi: https://doi.org/10.15587/2706-5448.2020.208400
- Lakhno, V., Sagun, A., Khaidurov, V., Panasko, E. (2020). Development of an intelligent subsystem for operating system incidents forecasting. Technology Audit and Production Reserves, 2 (2 (52)), 35–39. doi: https://doi.org/10.15587/2706-5448.2020.202498
- Hou, N., He, F., Zhou, Y., Chen, Y., Yan, X. (2018). A Parallel Genetic Algorithm With Dispersion Correction for HW/SW Partitioning on Multi-Core CPU and Many-Core GPU. IEEE Access, 6, 883–898. doi: https://doi.org/10.1109/access.2017.2776295
- Nobile, M. S., Cazzaniga, P., Besozzi, D., Colombo, R., Mauri, G., Pasi, G. (2018). Fuzzy Self-Tuning PSO: A settings-free algorithm for global optimization. Swarm and Evolutionary Computation, 39, 70–85. doi: https://doi.org/10.1016/j.swevo.2017.09.001
- Nugroho, E. D., Wibowo, M. E., Pulungan, R. (2017). Parallel implementation of genetic algorithm for searching optimal parameters of artificial neural networks. 2017 3rd International Conference on Science and Technology - Computer (ICST). doi: https://doi.org/10.1109/icstc.2017.8011867
- Bergel, A. (2020). Neuroevolution. Agile Artificial Intelligence in Pharo, 283–294. doi: https://doi.org/10.1007/978-1-4842-5384-7_14
- Lovska, A. (2015). Peculiarities of computer modeling of strength of body bearing construction of gondola car during transportation by ferry-bridge. Metallurgical and Mining Industry, 1, 49–54. Available at: https://www.metaljournal.com.ua/assets/Journal/english-edition/MMI_2015_1/10%20Lovska.pdf
- Lovska, A., Fomin, O. (2020). A new fastener to ensure the reliability of a passenger car body on a train ferry. Acta Polytechnica, 60 (6), 478–485. doi: https://doi.org/10.14311/ap.2020.60.0478
- Koshlan, A., Salnikova, O., Chekhovska, M., Zhyvotovskyi, R., Prokopenko, Y., Hurskyi, T. et. al. (2019). Development of an algorithm for complex processing of geospatial data in the special-purpose geoinformation system in conditions of diversity and uncertainty of data. Eastern-European Journal of Enterprise Technologies, 5 (9 (101)), 35–45. doi: https://doi.org/10.15587/1729-4061.2019.180197
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2021 Qasim Abbood Mahdi, Ruslan Zhyvotovskyi, Serhii Kravchenko, Ihor Borysov, Oleksandr Orlov, Ihor Panchenko, Yevhen Zhyvylo, Artem Kupchyn, Dmytro Koltovskov, Serhii Boholii
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.