Виявлення особливостей формування структури композитів на основі синтезованих нанопорошків діоксиду цирконію

Автор(и)

  • Едвін Спартакович Геворкян Український державний університет залізничного транспорту, Україна https://orcid.org/0000-0003-0521-3577
  • Володимир Павлович Нерубацький Український державний університет залізничного транспорту, Україна https://orcid.org/0000-0002-4309-601X
  • Володимир Олексійович Чишкала Харківський національний університет імені В. Н. Каразіна, Україна https://orcid.org/0000-0002-8634-4212
  • Оксана Миколаївна Морозова Український державний університет залізничного транспорту, Україна https://orcid.org/0000-0001-7397-2861

DOI:

https://doi.org/10.15587/1729-4061.2021.242503

Ключові слова:

діоксид цирконію, композиційні матеріали, консолідація, мікроструктура, оксид алюмінію, спікання, тріщиностійкість

Анотація

Розглянуто особливості формування мікроструктури композитів на основі синтезованих хімічним способом методом розкладу з фторидних солей нанопорошків діоксиду цирконію. При цьому було використано фтороводневу кислоту, концентровану азотну кислоту, водний розчин аміаку, металевий цирконій, полівініловий спирт. Встановлено, що зменшення пористості нанопорошків в процесі спікання є головним завданням на шляху формування високощільних матеріалів.

Проведено аналіз різних вихідних нанопорошків, їх морфології та особливостей спікання методом гарячого пресування з прямим пропусканням електричного струму. Розглянуто особливості отримання композитів на їх основі з добавками нанопорошків Al2O3 при використанні методу електроспікання. Показано, що збільшення вмісту нанодобавок оксиду алюмінію призводить до підвищення міцності і тріщиностійкості зразків за рахунок одночасного стримування аномального росту зерен та формування більш дрібної структури з високим вмістом тетрагональної фази.

Досліджено вплив режимів спікання на формування мікроструктури нанопорошків діоксиду цирконію з різним вмістом добавок оксиду алюмінію. Електричний струм сприяє поверхневій активності нанопорошків, а його змінне значення – частковому дробленню агломерованих зерен, таким чином впливаючи на структуроутворення композитів.

Визначено фізико-механічні властивості отриманих зразків, оптимальні склади сумішей та можливості поліпшення деяких параметрів. Встановлено, що для отримання композиційних матеріалів з високими фізико-механічними властивостями нанопорошки діоксиду цирконію, отримані методом розкладання з фторидних солей, цілком підходять. Вони конкурентоспроможні з імпортними аналогами та дозволяють отримати тріщиностійкість 7,8 МПа·м1/2 та міцність 820 МПа

Біографії авторів

Едвін Спартакович Геворкян, Український державний університет залізничного транспорту

Доктор технічних наук, професор

Кафедра інженерії вагонів та якості продукції

Володимир Павлович Нерубацький, Український державний університет залізничного транспорту

Кандидат технічних наук, доцент

Кафедра електроенергетики, електротехніки та електромеханіки

Володимир Олексійович Чишкала, Харківський національний університет імені В. Н. Каразіна

Кандидат технічних наук, доцент

Кафедра матеріалів реакторобудування та фізичних технологій

Оксана Миколаївна Морозова, Український державний університет залізничного транспорту

Аспірант

Кафедра інженерії вагонів та якості продукції

Посилання

  1. Gevorkyan, E. S., Vovk, R. V., Sofronov, D. S., Nerubatskyi, V. P., Morozova, O. M. (2021). The composite material based on synthesized zirconium oxide nanopowder for structural appliance. 17th Edition of Advanced Nano Materials. Aveiro, 267. Available at: http://repo.knmu.edu.ua/handle/123456789/29324
  2. Von Steyern, P. V., Carlson, P., Nilner, K. (2005). All-ceramic fixed partial dentures designed according to the DC-Zirkon® technique. A 2-year clinical study. Journal of Oral Rehabilitation, 32 (3), 180–187. doi: https://doi.org/10.1111/j.1365-2842.2004.01437.x
  3. Chevalier, J., Gremillard, L., Deville, S. (2007). Low-Temperature Degradation of Zirconia and Implications for Biomedical Implants. Annual Review of Materials Research, 37 (1), 1–32. doi: https://doi.org/10.1146/annurev.matsci.37.052506.084250
  4. Schmitt, J., Goellner, M., Wichmann, M., Reich, S. (2012). Zirconia posterior fixed partial dentures: 5-year clinical results of a prospective clinical trial. The International journal of prosthodontics, 25 (6), 585–589. Available at: https://www.researchgate.net/publication/232706570_Zirconia_Posterior_Fixed_Partial_Dentures_5-Year_Clinical_Results_of_a_Prospective_Clinical_Trial
  5. Roe, P., Kan, J. Y. K., Rungcharassaeng, K., Won, J. B. (2011). Retrieval of a Fractured Zirconia Implant Abutment Using a Modified Crown and Bridge Remover: A Clinical Report. Journal of Prosthodontics, 20 (4), 315–318. doi: https://doi.org/10.1111/j.1532-849x.2011.00696.x
  6. Gevorkyan, E. S., Nerubackiy, V. P., Mel'nik, O. M. (2010). Goryachee pressovanie nanoporoshkov sostava ZrO2-5 %Y2O3. Zbirnyk naukovykh prats Ukrainskoi derzhavnoi akademiyi zaliznychnoho transportu, 119, 106–110.
  7. Hannink, R. H. J., Kelly, P. M., Muddle, B. C. (2004). Transformation Toughening in Zirconia-Containing Ceramics. Journal of the American Ceramic Society, 83 (3), 461–487. doi: https://doi.org/10.1111/j.1151-2916.2000.tb01221.x
  8. Morozova, O. M., Timofeeva, L. A., Chyshkala, V. A., Gevorkyan, E. S., Nerubatskyi, V. P., Rutskyi, M. (2021). Improvement of metrological support of a new material composition based on zirconium dioxide. Abstracts of the 2nd International Scientific and Technical Conference "Intelligent Transport Technologies". Kharkiv: USURT, 154–155. Available at: http://repo.knmu.edu.ua/handle/123456789/28604
  9. Chyshkala, V. O., Lytovchenko, S. V., Gevorkyan, E. S., Nerubatskyi, V. P., Morozova, O. M. (2021). Mastering the processes of synthesis of oxide compounds with the use of a powerful source of fast heating of the initial ingredients. Zbirnyk naukovykh prats Ukrainskoho derzhavnoho universytetu zaliznychnoho transportu, 196, 118–128. Available at: https://kart.edu.ua/wp-content/uploads/2021/04/tht_zbirn_196.pdf
  10. Marek, I. O., Ruban, O. K., Redko, V. P., Danylenko, M. I., Dudnik, O. V. (2017). Nanokrystalichni poroshky na osnovi ZrO2 dlia vyhotovlennia kompozytiv, stiykykh do protsesu starinnia. Nanosistemi, Nanomateriali, Nanotehnologii, 15 (1), 91–98. Available at: https://www.imp.kiev.ua/nanosys/media/pdf/2017/1/nano_vol15_iss1_p0091p0098_2017.pdf
  11. Sokolov, I. E., Fomichev, V. V., Zakalyukin, R. M., Kopylova, E. V., Kumskov, A. S., Mozhchil, R. N., Ionov, A. M. (2021). Synthesis of nanosized zirconium dioxide, cobalt oxide and related phases in supercritical CO2 fluid. Izvestiya Vysshikh Uchebnykh Zavedenii Khimiya Khimicheskaya Tekhnologiya, 64 (5), 35–43. doi: https://doi.org/10.6060/ivkkt.20216405.6060
  12. McLaren, E. A., Maharishi, A., White, S. N. (2021). Influence of yttria content and surface treatment on the strength of translucent zirconia materials. The Journal of Prosthetic Dentistry. doi: https://doi.org/10.1016/j.prosdent.2021.07.001
  13. Markandan, K., Chin, J. K., Tan, M. T. T. (2014). Study on Mechanical Properties of Zirconia-Alumina Based Ceramics. Applied Mechanics and Materials, 625, 81–84. doi: https://doi.org/10.4028/www.scientific.net/amm.625.81
  14. Boniecki, M., Sadowski, T., Gołębiewski, P., Węglarz, H., Piątkowska, A., Romaniec, M. et. al. (2020). Mechanical properties of alumina/zirconia composites. Ceramics International, 46 (1), 1033–1039. doi: https://doi.org/10.1016/j.ceramint.2019.09.068
  15. Li, Q., Hao, X., Gui, Y., Qiu, H., Ling, Y., Zheng, H. et. al. (2021). Controlled sintering and phase transformation of yttria-doped tetragonal zirconia polycrystal material. Ceramics International, 47 (19), 27188–27194. doi: https://doi.org/10.1016/j.ceramint.2021.06.139
  16. Gevorkyan, E. S., Morozova, O. M., Sofronov, D. S., Chyshkala, V. A., Nerubatskyi, V. P. (2021). Composite material based on synthesized zirconium oxide nanopowders with enhanced mechanical properties. International workshop for young scientists (ISMA–2021) "Functional materials for technical and biomedical applications". Kharkiv, 29. Available at: http://repo.knmu.edu.ua/handle/123456789/29292
  17. Gevorkyan, E. S., Morozova, O. M., Sofronov, D. S., Nerubatskyi, V. P., Ponomarenko, N. S. (2021). The formation of ZrO2-Y2O3-nanoparticles from fluoride solutions. II International Advanced Study Conference Condensed Matter and Low Temperature Physics 2021. Kharkiv: FOP Brovin O. V., 190. Available at: http://repo.knmu.edu.ua/handle/123456789/28791
  18. Gevorkyan, E. S., Rucki, M., Kagramanyan, A. A., Nerubatskiy, V. P. (2019). Composite material for instrumental applications based on micro powder Al2O3 with additives nano-powder SiC. International Journal of Refractory Metals and Hard Materials, 82, 336–339. doi: https://doi.org/10.1016/j.ijrmhm.2019.05.010
  19. Gevorkyan, E., Nerubatskyi, V., Gutsalenko, Y., Melnik, O., Voloshyna, L. (2020). Examination of patterns in obtaining porous structures from submicron aluminum oxide powder and its mixtures. Eastern-European Journal of Enterprise Technologies, 6 (6 (108)), 41–49. doi: https://doi.org/10.15587/1729-4061.2020.216733
  20. Bulychev, S. I., Alehin, V. P. (1990). Ispytanie materialov nepreryvnym vdavlivaniem indentora. Moscow: Mashinostroenie, 224.
  21. Radko, I., Marhon, M. (2016). Features of research of grip strength composite materials contact with electrical worn parts. Machinery and Energetics, 252, 176–185. Available at: http://journals.nubip.edu.ua/index.php/Tekhnica/article/view/8084/7735
  22. GOST 25.506–85. Design, calculation and strength testing. Methods of mechanical testing of metals. Determination of fracture toughness characteristics under the static loading. Moscow: Izdatel'stvo standartov, 62. Available at: https://docs.cntd.ru/document/1200004652
  23. Podrezov, Yu. M., Verbylo, D. G., Danylenko, V. I., Tsyganenko, N. I., Shurygin, B. V., Romanko, P. М. (2018). Express method for prediction of long-term strength and creep resistance of high-temperature titanium-based alloys. Elektronnaya mikroskopiya i prochnost' materialov. Seriya: Fizicheskoe materialovedenie, struktura i svoystva materialov, 24, 35–46. Available at: http://docplayer.net/171359405-Ekspres-metod-prognozuvannya-dovgotrivaloyi-micnosti-ta-oporu-povzuchosti-v-visokotemperaturnih-splavah-na-osnovi-titanu.html
  24. Fomin, O., Lovska, A., Píštěk, V., Kučera, P. (2019). Dynamic load effect on the transportation safety of tank containers as part of combined trains on railway ferries. Vibroengineering PROCEDIA, 29, 124–129. doi: https://doi.org/10.21595/vp.2019.21138
  25. Lovska, A., Fomin, O., Kučera, P., Píštěk, V. (2020). Calculation of Loads on Carrying Structures of Articulated Circular-Tube Wagons Equipped with New Draft Gear Concepts. Applied Sciences, 10 (21), 7441. doi: https://doi.org/10.3390/app10217441
  26. Karban', O. V., Hazanov, E. N., Hasanov, O. L., Salamatov, E. I., Goncharov, O. Yu. (2010). Nasledstvennost' i modifikaciya nanostrukturnoy keramiki ZrO2 v processe izgotovleniya. Perspektivnye materialy, 6, 76–85.
  27. Kul'kov, S. N., Korolev, P. V., Mel'nikov, A. G. (1995). Fazovye prevrascheniya v poroshke dioksida cirkoniya posle impul'snogo nagruzheniya. Izvestiya vuzov. Fizika, 38 (1), 51–55.
  28. Gevorkyan, E. S., Nerubatskyi, V. P., Chyshkala, V. O., Morozova, O. M. (2020). Aluminum oxide nanopowders sintering at hot pressing using direct current. Modern scientific researches, 14, 12–18.
  29. Gevorkyan, E., Rucki, M., Sałaciński, T., Siemiątkowski, Z., Nerubatskyi, V., Kucharczyk, W. et. al. (2021). Feasibility of Cobalt-Free Nanostructured WC Cutting Inserts for Machining of a TiC/Fe Composite. Materials, 14 (12), 3432. doi: https://doi.org/10.3390/ma14123432
  30. Golovin, Yu. I. (2009). Nanoindentirovanie kak sredstvo kompleksnoy ocenki fiziko-mehanicheskih svoystv materialov v submikroob'emah. Zavodskaya laboratoriya. Diagnostika materialov, 75 (1), 45–59.
  31. Tret'yakov, Yu. D. (1978). Tverdofaznye reakcii. Moscow: Himiya, 360.
  32. Raychenko, A. I. (1987). Vliyanie skorosti nagreva na poroobrazovanie v ul'tradisperstnyh poroshkah. Metallurgiya, 5, 14–18.
  33. Panova, T. I., Arsent'ev, M. Yu., Morozova, L. V., Drozdova, I. A. (2010). Sintez i issledovanie nanokristallicheskoy keramiki v sisteme ZrO2–SeO2–A12O3. Fizika i himiya stekla, 36 (4), 585–595.
  34. Chyshkala, V. O., Lytovchenko, S. V., Gevorkyan, E. S., Nerubatskyi, V. P., Morozova, O. M. (2021). Structural phase processes in multicomponent metal ceramic oxide materials based on the system Y–Ti–Zr–O (Y2O3–TiO2–ZrO2). SWorldJournal, 7, 17–32. Available at: https://www.sworldjournal.com/index.php/swj/article/view/swj07-01-008
  35. Latella, B. A., Henkel, L., Mehrtens, E. G. (2006). Permeability and high temperature strength of porous mullite-alumina ceramics for hot gas filtration. Journal of Materials Science, 41 (2), 423–430. doi: https://doi.org/10.1007/s10853-005-2654-8
  36. Nettleship, I., Stevens, R. (1987). Tetragonal zirconia polycrystal (TZP) – A review. International Journal of High Technology Ceramics, 3 (1), 1–32. doi: https://doi.org/10.1016/0267-3762(87)90060-9
  37. Sakka, Y., Suzuki, T. S., Morita, K., Nakano, K., Hiraga, K. (2001). Colloidal processing and superplastic properties of zirconia- and alumina-based nanocomposites. Scripta Materialia, 44 (8-9), 2075–2078. doi: https://doi.org/10.1016/s1359-6462(01)00889-2
  38. Gevorkyan, E. S., Nerubatskyi, V. P., Gutsalenko, Yu. H., Morozova, O. M. (2020). Some features of ceramic foam filters energy efficient technologies development. Modern engineering and innovative technologies, 14, 54–68. Available at: http://repo.knmu.edu.ua/bitstream/123456789/28043/1/Article%2c%2011.2020.pdf
  39. Hevorkian, E. S., Nerubatskyi, V. P. (2009). Do pytannia otrymannia tonkodyspersnykh struktur z nanoporoshkiv oksydu aliuminiyu. Zbirnyk naukovykh prats Ukrainskoi derzhavnoi akademiyi zaliznychnoho transportu, 111, 151–167. Available at: http://lib.kart.edu.ua/handle/123456789/4418
  40. Hevorkian, E. S., Nerubatskyi, V. P. (2009). Modeliuvannia protsesu hariachoho presuvannia AL2O3 pry priamomu propuskanni zminnoho elektrychnoho strumu z chastotoiu 50 Hts. Zbirnyk naukovykh prats Ukrainskoi derzhavnoi akademii zaliznychnoho transportu, 110, 45–52. Available at: http://lib.kart.edu.ua/handle/123456789/4416
  41. Marmer, N. E., Balaklienko, Yu. M., Novozhilov, S. A., Horasanov, O. L., Dvilis, E. S. (2007). Vakuumnoe spekanie keramiki iz nanoporoshkov oksida cirkoniya. Al'ternativnaya energetika i ekologiya, 6 (50), 41–43. Available at: https://cyberleninka.ru/article/n/vakuumnoe-spekanie-keramiki-iz-nanoporoshkov-oksida-tsirkoniya
  42. Tokita, M. (2004). Mechanism of spark plasma sintering. Journal of Materials Science, 5 (45), 78–82.
  43. Yoshimura, M., Ohji, T., Sando, M., Choa, Y.-H., Sekino, T., Niihara, K. (1999). Synthesis of nanograined ZrO2-based composites by chemical processing and pulse electric current sintering. Materials Letters, 38 (1), 18–21. doi: https://doi.org/10.1016/s0167-577x(98)00125-6
  44. Fomin, O., Lovska, A. (2020). Establishing patterns in determining the dynamics and strength of a covered freight car, which exhausted its resource. Eastern-European Journal of Enterprise Technologies, 6 (7 (108)), 21–29. doi: https://doi.org/10.15587/1729-4061.2020.217162
  45. Grabis, J., Steins, I., Rasmane, D., Krumina, A., Berzins, M. (2006). Preparation and characterization of ZrO2-Al2O3 particulate nanocomposites produced by plasma technique. Proceedings of the Estonian academy of sciences, engineering, 12 (4), 349–357. Available at: https://www.kirj.ee/public/va_te/eng-2006-4-3.pdf
  46. Gevorkyan, E. S., Nerubatskyi, V. P., Chyshkala, V. O., Morozova, O. M. (2021). Cutting composite material based on nanopowders of aluminum oxide and tungsten monocarbide. Modern engineering and innovative technologies, 15, 6–14. Available at: http://repo.knmu.edu.ua/bitstream/123456789/28472/1/%D0%A1%D1%82%D0%B0%D1%82%D1%8C%D1%8F%2002.2021%20%D0%93%D0%B5%D1%80%D0%BC%D0%B0%D0%BD%D0%B8%D1%8F.pdf
  47. Samsonov, G. V. (Eds.) (1969). Fiziko-himicheskie svoystva okislov. Moscow: Metallurgiya, 455.
  48. Buyakova, S. P., Horischenko, Yu. A., Kul'kov, S. N. (2004). Struktura, fazovyy sostav i morfologicheskoe stroenie plazmohimicheskih poroshkov ZrO2(MgO). Ogneupory i tehnicheskaya keramika, 6, 25–30.
  49. Davar, F., Hassankhani, A., Loghman-Estarki, M. R. (2013). Controllable synthesis of metastable tetragonal zirconia nanocrystals using citric acid assisted sol–gel method. Ceramics International, 39 (3), 2933–2941. doi: https://doi.org/10.1016/j.ceramint.2012.09.067
  50. Gremillard, L., Chevalier, J., Epicier, T., Deville, S., Fantozzi, G. (2004). Modeling the aging kinetics of zirconia ceramics. Journal of the European Ceramic Society, 24 (13), 3483–3489. doi: https://doi.org/10.1016/j.jeurceramsoc.2003.11.025
  51. Nikitin, D. S., Zhukov, V. A., Perkov, V. V. (2004). Poluchenie i struktura poristoy keramiki iz nanokristallicheskogo dioksida cirkoniya. Neorganicheskie materialy, 40 (7), 869–872.

##submission.downloads##

Опубліковано

2021-10-31

Як цитувати

Геворкян, Е. С., Нерубацький, В. П., Чишкала, В. О., & Морозова, О. М. (2021). Виявлення особливостей формування структури композитів на основі синтезованих нанопорошків діоксиду цирконію. Eastern-European Journal of Enterprise Technologies, 5(12(113), 6–19. https://doi.org/10.15587/1729-4061.2021.242503

Номер

Розділ

Матеріалознавство