Дослідження конструкції і технологічних параметрів багатоканальної форсунки холодного напилювання

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2021.242707

Ключові слова:

ехнологія холодного напилювання, багатоканальне сопло, траєкторія частинок, зіткнення частинок, критична швидкість

Анотація

Технологія холодного напилювання – це метод отримання покриття шляхом високошвидкісного зіткнення частинок з підкладкою в надзвуковому (300–1200 м/с) рушійному газі. Процес осадження являє собою в основному механічне поєднання, яке приваблює все більше уваги в інженерних додатках. Найважливішим компонентом системи холодного напилювання є сопло. Продуктивність форсунки безпосередньо впливає на якість покриття поверхні матеріалу. Тому обговорення насадки має велике значення. В даний час в техніці існує безліч прикладів одноканальних форсунок для холодного напилення, але мало повідомлень про багатоканальних форсунках для холодного розпилення. В даній статті досліджується багатоканальна форсунка для холодного напилення, проектуєть-ся спеціальна трьохканальна форсунка з внутрішніми каналами і використовується кут 90° у частині форсунки, що розширюється. При напилюванні на невеликій площі кутова форсунка має очевидні переваги для напилювання більшої площі. Аналізуються тиск упорскування порошку, розмір часток, коефіцієнт вилучення і положення внутрішнього каналу, які впливають на траєкторію руху частинок. У поєднанні з цими факторами багатоканальне сопло оптимізовано та вдосконалено для вирішення проблеми зіткнення частинок з внутрішньою стінкою сопла. Нарешті, за допомогою багатоканального сопла попередньо досліджуються технологічні параметри порошків алюмінію, титану, міді, нікелю, магнію і цинку. Результати показують, що багатоканальне сопло відповідає ви-могам до критичної швидкості напилювання порошку міді, магнію і цинку при гомогенному (порошок і матриця з одного матеріалу) і напилювання алюмінієвого порошку в разі неоднорідного (порошок і матриця різні). матеріали), багатоканальна форсунка має перспективу надійного інженерного застосування і служить конкретним довідковим матеріалом для відповідних технічних фахівців

Біографії авторів

Wenjie Hu, National Aerospace University “Kharkiv Aviation Institute”; Nanchang Institute of Technology

Postgraduate Student

Department of Aeronautics and Astronautics

Lecturer

Department of Aeronautics and Astronautics

Kun Tan, National Aerospace University “Kharkiv Aviation Institute”

Postgraduate Student

Department of Aeronautics and Astronautics

Сергій Євгенійович Маркович, Національний аерокосмічний університет ім. М. Є. Жуковського "Харківський авіаційний інститут"

Кандидат технічних наук, професор, помічник ректора з інноваційної діяльності

Tingting Cao, Nanchang Hangkong University

Master, Deputy Director

Department of Aircraft Manufacture Engineering

Посилання

  1. Goyal, T., Sidhu, T. S., Walia, R. S. (2013). An overview on cold spray process over competitive technologies for electro-technical applications. Presentation made at The National Conference on Advancements and Futuristic Trends in Mechanical and Materials Engineering, YCoE, Talwandi Sabo.
  2. Oyinbo, S. T., Jen, T.-C. (2019). A comparative review on cold gas dynamic spraying processes and technologies. Manufacturing Review, 6, 25. doi: https://doi.org/10.1051/mfreview/2019023
  3. Moridi, A., Hassani-Gangaraj, S. M., Guagliano, M., Dao, M. (2014). Cold spray coating: review of material systems and future perspectives. Surface Engineering, 30 (6), 369–395. doi: https://doi.org/10.1179/1743294414y.0000000270
  4. Marrocco, T., McCartney, D. G., Shipway, P. H., Sturgeon, A. J. (2006). Production of Titanium Deposits by Cold-Gas Dynamic Spray: Numerical Modeling and Experimental Characterization. Journal of Thermal Spray Technology, 15 (2), 263–272. doi: https://doi.org/10.1361/105996306x108219
  5. Assadi, H., Gärtner, F., Stoltenhoff, T., Kreye, H. (2003). Bonding mechanism in cold gas spraying. Acta Materialia, 51 (15), 4379–4394. doi: https://doi.org/10.1016/s1359-6454(03)00274-x
  6. Raoelison, R. N., Xie, Y., Sapanathan, T., Planche, M. P., Kromer, R., Costil, S., Langlade, C. (2018). Cold gas dynamic spray technology: A comprehensive review of processing conditions for various technological developments till to date. Additive Manufacturing, 19, 134–159. doi: https://doi.org/10.1016/j.addma.2017.07.001
  7. Singh, H., Sidhu, T. S., Kalsi, S. B. S. (2012). Cold spray technology: future of coating deposition processes. Frattura Ed Integrità Strutturale, 6 (22), 69–84. doi: https://doi.org/10.3221/igf-esis.22.08
  8. Sun, W., Tan, A. W. Y., Marinescu, I., Toh, W. Q., Liu, E. (2017). Adhesion, tribological and corrosion properties of cold-sprayed CoCrMo and Ti6Al4V coatings on 6061-T651 Al alloy. Surface and Coatings Technology, 326, 291–298. doi: https://doi.org/10.1016/j.surfcoat.2017.07.062
  9. MacDonald, D., Fernández, R., Delloro, F., Jodoin, B. (2016). Cold Spraying of Armstrong Process Titanium Powder for Additive Manufacturing. Journal of Thermal Spray Technology, 26 (4), 598–609. doi: https://doi.org/10.1007/s11666-016-0489-2
  10. Zhang, J. H., Sun, R. (2014). Research progress of laser cladding on titanium alloy surface. Material review, 28 (6), 89–93.
  11. Pan, X. Y., Liang, W. P., Miu, Q., Ren, B. L., Liu, W. (2016). Tribological Behavior of Plasma Chromized Layer on TC21 Alloy at different temperatures. Journal of Nanjing University of Aeronautics & Astronautics, 48 (1), 35–41. doi: https://doi.org/10.16356/j.1005-2615.2016.01.006
  12. Hu, W., Markovych, S., Tan, K., Shorinov, O., Cao, T. (2020). Surface repair of aircraft titanium alloy parts by cold spraying technology. Aerospace Technic and Technology, 3, 30–42. doi: https://doi.org/10.32620/aktt.2020.3.04
  13. Karthikeyan, J. (2007). The advantages and disadvantages of the cold spray coating process. The Cold Spray Materials Deposition Process, 62–71. doi: https://doi.org/10.1533/9781845693787.1.62
  14. Meyer, M., Lupoi, R. (2015). An analysis of the particulate flow in cold spray nozzles. Mechanical Sciences, 6 (2), 127–136. doi: https://doi.org/10.5194/ms-6-127-2015
  15. Cavaliere, P., Silvello, A. (2016). Mechanical properties of cold sprayed titanium and nickel based coatings. Surface Engineering, 32 (9), 670–676. doi: https://doi.org/10.1179/1743294415y.0000000080
  16. Chen, Q.-Y., Zou, Y.-L., Chen, X., Bai, X.-B., Ji, G.-C., Yao, H.-L. et. al. (2019). Morphological, structural and mechanical characterization of cold sprayed hydroxyapatite coating. Surface and Coatings Technology, 357, 910–923. doi: https://doi.org/10.1016/j.surfcoat.2018.10.056
  17. Tewes, J. (2013). Advancements in cold Spray. CSAT Summer Meeting. Available at: https://docplayer.net/39787940-Advancements-in-cold-spray.html
  18. Zhou, X. L., Zhang, J. S., Wu, X. K. (2011). Advanced Cold Spraying Technology and Application. Machinery Industry Press.
  19. Li, Q. (2008). Structure design and optimization of cold spray gun. Shenyang University of Technology. Available at: http://cdmd.cnki.com.cn/article/cdmd-10142-2008203950.htm
  20. Arndt, A., Pyritz, U., Schiewe, H., Ullrich, R. (2008). WO2008084025 - Method and device for the cold-gas spraying of particles having different solidities and/or ductilities. Available at: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2008084025&tab=PCTBIBLIO
  21. Wu, Z. L. (2011). Numerical simulation research of the internal flow field cold of the spray gun nozzle and structural optimization, Henan Polytechnic University.
  22. Irissou, E., Legoux, J.-G., Ryabinin, A. N., Jodoin, B., Moreau, C. (2008). Review on Cold Spray Process and Technology: Part I – Intellectual Property. Journal of Thermal Spray Technology, 17 (4), 495–516. doi: https://doi.org/10.1007/s11666-008-9203-3
  23. Li, W.-Y., Li, C.-J. (2005). Optimal Design of a Novel Cold Spray Gun Nozzle at a Limited Space. Journal of Thermal Spray Technology, 14 (3), 391–396. doi: https://doi.org/10.1361/105996305x59404
  24. Canales, H., Litvinov, A., Markovych, S., Dolmatov, A. (2014). Calculation of the critical velocity of low pressure cold sprayed materials. Questions of design and production of designs of aircraft, 3, 86–91. URL: http://nbuv.gov.ua/UJRN/Pptvk_2014_3_11
  25. Cao, T. T., Yang, Y. X., Hu, W. J. (2021). Pat. No. CN212688180U. The gas path protection device for cold spraying. Available at: https://wenku.baidu.com/view/7f5efcecf8d6195f312b3169a45177232e60e4c8
  26. Dolmatov, A. I., Polyviany, S. A. (2021). Interaction of Solid Particles from a Gas Stream with the Surface of a Flat Nozzle. METALLOFIZIKA I NOVEISHIE TEKHNOLOGII, 43 (3), 319–328. doi: https://doi.org/10.15407/mfint.43.03.0319
  27. Hu, W. J., Tan, K., Markovych, S., Liu, X. L. (2021). Study of a Cold Spray Nozzle Throat on Acceleration Characteristics via CFD. Journal of Engineering Sciences, 8 (1), F19–F24. doi: https://doi.org/10.21272/jes.2021.8(1).f3
  28. Grujicic, M., Zhao, C. L., Tong, C., DeRosset, W. S., Helfritch, D. (2004). Analysis of the impact velocity of powder particles in the cold-gas dynamic-spray process. Materials Science and Engineering: A, 368 (1-2), 222–230. doi: https://doi.org/10.1016/j.msea.2003.10.312
  29. Li, C.-J., Li, W.-Y., Liao, H. (2006). Examination of the Critical Velocity for Deposition of Particles in Cold Spraying. Journal of Thermal Spray Technology, 15 (2), 212–222. doi: https://doi.org/10.1361/105996306x108093
  30. Van Steenkiste, T. H., Smith, J. R., Teets, R. E. (2002). Aluminum coatings via kinetic spray with relatively large powder particles. Surface and Coatings Technology, 154 (2-3), 237–252. doi: https://doi.org/10.1016/s0257-8972(02)00018-x
  31. Cao, C. C., Li, W. Y., Han, T. P., Yang, X. Y., Xu, Y. X., Hu, K. W. (2019). Simulation study on effect of cold spray nozzle material on particle Acceleration Behavior. Journal of Netshape Forming Engineering, 6 (11), 149–153. Available at: https://global.cnki.net/kcms/detail/detail.aspx?filename=JMCX201906023&dbcode=CJFQ&dbname=CJFD2019&v=
  32. Alhulaifi, A. S., Buck, G. A. (2014). A Simplified Approach for the Determination of Critical Velocity for Cold Spray Processes. Journal of Thermal Spray Technology, 23 (8), 1259–1269. doi: https://doi.org/10.1007/s11666-014-0128-8
  33. Yang, Y., Hao, Y., Kong, L. Y., Cui, X. Y., Wu, J., Li, T. F., Xiong, T. Y. (2015). Research on Critical Velocity of Particle during Cold Spray Process. Thermal spray technology, 7 (4), 1–16. Available at: http://61.143.209.103:81/article/detail.aspx?id=667740126

##submission.downloads##

Опубліковано

2021-10-31

Як цитувати

Hu, W., Tan, K., Маркович, С. Є., & Cao, T. (2021). Дослідження конструкції і технологічних параметрів багатоканальної форсунки холодного напилювання. Eastern-European Journal of Enterprise Technologies, 5(1(113), 6–14. https://doi.org/10.15587/1729-4061.2021.242707

Номер

Розділ

Виробничо-технологічні системи