Оцінка ефективності лінійного дискримінантного аналізу та методу опорних векторів для класифікації кесаревого розтину

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2021.242798

Ключові слова:

кесарів розтин, пологи шляхом кесаревого розтину, ЛДА, МОВ, Covid-19, вагітні жінки

Анотація

В даний час лікарня є вразливим місцем для передачі Covid-19, тому народжувати в лікарні дуже ризиковано. Крім того, в даний час лікарні приймають пологи тільки шляхом кесаревого розтину. Матерям, які можуть народити природним шляхом, рекомендується народжувати з акушеркою, оскільки шанси заразитися Covid-19 набагато нижче. В цілому, дослідження спрямоване на вивчення ефективності методу ЛДА-МОВ для прогнозування необхідності майбутньої матері в кесаревому розтині або народжувати природним шляхом. Цілями даного дослідження є:

1) визначити оптимальні параметри побудови моделі діагностики;

2) визначити максимальну точність моделі;

3) порівняти точність з іншими методами.

Дані, що використовуються в дослідженні, є набором даних про кесаревий розтин. Ці дані складаються з результатів 80 вагітних жінок після кесаревого розтину з найбільш важливими характеристиками клінічних проблем з пологами. На підставі результатів проведених експериментів визначено кілька значень параметрів, які забезпечують найкращі результати для побудови моделі діагностики, а саме σ (сигма) –5,9 для 70 % навчальних даних, σ=4, –6,1 і 6,6 для 80 % навчальних даних і σ=4 і 16 для 90 % навчальних даних. Крім того, отримані результати показують, що метод ЛДА-МОВ може правильно класифікувати метод кесаревого розтину з точністю до 100 %. Це дослідження також може перевершити методи попередніх досліджень. Результати показують, що ЛДА-МОВ для цього тематичного дослідження забезпечує точність 100,00 %. Даний метод має великий потенціал для використання лікарями в якості ранньої діагностики для визначення необхідності матері в кесаревому розтині або народжувати природним шляхом. Таким чином, матері можуть запобігти передачі Covid-19 у лікарнях

Спонсор дослідження

  • The authors would like to thank Politeknik Negeri Jakarta, for the support of research funding, through the Research Grant in the Field of Science and Institutional Development

Біографії авторів

Abdul Azis Abdillah, Politeknik Negeri Jakarta

Master of Mathematics, Assistance Professor

Department of Mechanical Engineering

Azwardi Azwardi, Politeknik Negeri Jakarta

Master of Computer, Assistance Professor

Department of Mechanical Engineering

Sulaksana Permana, Universitas Indonesia

Doctor of Engineering in Metallurgy and Materials

Centre of Mineral Processing and Corrosion Research

Department of Metallurgy and Materials

Iwan Susanto, Politeknik Negeri Jakarta

Doctor of Materials Science and Engineering, Assistance Professor

Department of Mechanical Engineering

Fuad Zainuri, Politeknik Negeri Jakarta

Doctoral of Mechanical Engineering, Assistance Professor

Department of Mechanical Engineering

Samsul Arifin, Bina Nusantara University

Doctoral of Mathematic, Assistance Professor

Statistics Department

School of Computer Science

Посилання

  1. Abdillah, A. A., Suwarno, S. (2016). Diagnosis of Diabetes using Support Vector Machines with Radial Basis Function Kernels. International Journal of Technology, 7 (5), 849. doi: https://doi.org/10.14716/ijtech.v7i5.1370
  2. Abdillah, A. A., Prianto, B. (2019). Pembelajaran Mesin Menggunakan Principal Component Analysis dan Support Vector Machines untuk Mendeteksi Diabetes. Jurnal Matematika Dan Sains, 24 (1), 10–14. doi: https://doi.org/10.5614/jms.2019.24.1.2
  3. Bernardini, M., Romeo, L., Misericordia, P., Frontoni, E. (2020). Discovering the Type 2 Diabetes in Electronic Health Records Using the Sparse Balanced Support Vector Machine. IEEE Journal of Biomedical and Health Informatics, 24 (1), 235–246. doi: https://doi.org/10.1109/jbhi.2019.2899218
  4. Zhang, Y.-D., Jiang, Y., Zhu, W., Lu, S., Zhao, G. (2017). Exploring a smart pathological brain detection method on pseudo Zernike moment. Multimedia Tools and Applications, 77 (17), 22589–22604. doi: https://doi.org/10.1007/s11042-017-4703-0
  5. Ahmmed, R., Swakshar, A. S., Hossain, M. F., Rafiq, M. A. (2017). Classification of tumors and it stages in brain MRI using support vector machine and artificial neural network. 2017 International Conference on Electrical, Computer and Communication Engineering (ECCE). doi: https://doi.org/10.1109/ecace.2017.7912909
  6. Birare, G., Chakkarwar, V. A. (2018). Automated Detection of Brain Tumor Cells Using Support Vector Machine. 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT). doi: https://doi.org/10.1109/icccnt.2018.8494133
  7. Menaka, K., Karpagavalli, S. (2013). Breast Cancer Classification using Support Vector Machine and Genetic Programming. International Journal of Innovative Research in Computer and Communication Engineering, 1 (7), 1410–1417.
  8. Huang, S., Cai, N., Pacheco, P. P., Narrandes, S., Wang, Y., Xu, W. (2018). Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genomics & Proteomics, 15 (1), 41–51. doi: https://doi.org/10.21873/cgp.20063
  9. Tomar, D., Agarwal, S. (2014). Feature Selection based Least Square Twin Support Vector Machine for Diagnosis of Heart Disease. International Journal of Bio-Science and Bio-Technology, 6 (2), 69–82. doi: https://doi.org/10.14257/ijbsbt.2014.6.2.07
  10. Yang, C., An, B., Yin, S. (2018). Heart-Disease Diagnosis via Support Vector Machine-Based Approaches. 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC). doi: https://doi.org/10.1109/smc.2018.00534
  11. Nilashi, M., Ahmadi, H., Manaf, A. A., Rashid, T. A., Samad, S., Shahmoradi, L. et. al. (2020). Coronary Heart Disease Diagnosis Through Self-Organizing Map and Fuzzy Support Vector Machine with Incremental Updates. International Journal of Fuzzy Systems, 22 (4), 1376–1388. doi: https://doi.org/10.1007/s40815-020-00828-7
  12. Amin, M. Z., Ali, A. (2017). Performance Evaluation of Supervised Machine Learning Classifiers for Predicting Healthcare Operational Decisions. C-Section Classification Database Report, UCI Machine Learning Repository. doi: http://dx.doi.org/10.13140/RG.2.2.26371.25127
  13. Suwarno, Santo, P. (2019). Performance Evaluation Of Artificial Neural Network Classifiers For Predicting Cesarean Sections. International Journal Of Scientific & Technology Research, 8 (9), 1843–1846. Available at: http://www.ijstr.org/final-print/sep2019/Performance-Evaluation-Of-Artificial-Neural-Network-Classifiers-For-Predicting-Cesarean-Sections.pdf
  14. Desyani, T., Saifudin, A., Yulianti, Y. (2020). Feature Selection Based on Naive Bayes for Caesarean Section Prediction. IOP Conference Series: Materials Science and Engineering, 879, 012091. doi: https://doi.org/10.1088/1757-899x/879/1/012091
  15. Fergus, P., Selvaraj, M., Chalmers, C. (2018). Machine learning ensemble modelling to classify caesarean section and vaginal delivery types using Cardiotocography traces. Computers in Biology and Medicine, 93, 7–16. doi: https://doi.org/10.1016/j.compbiomed.2017.12.002
  16. Ricciardi, C., Improta, G., Amato, F., Cesarelli, G., Romano, M. (2020). Classifying the type of delivery from cardiotocographic signals: A machine learning approach. Computer Methods and Programs in Biomedicine, 196, 105712. doi: https://doi.org/10.1016/j.cmpb.2020.105712
  17. Lukmanto, R. B., Suharjito, Nugroho, A., Akbar, H. (2019). Early Detection of Diabetes Mellitus using Feature Selection and Fuzzy Support Vector Machine. Procedia Computer Science, 157, 46–54. doi: https://doi.org/10.1016/j.procs.2019.08.140
  18. Howsalya Devi, R. D., Bai, A., Nagarajan, N. (2020). A novel hybrid approach for diagnosing diabetes mellitus using farthest first and support vector machine algorithms. Obesity Medicine, 17, 100152. doi: https://doi.org/10.1016/j.obmed.2019.100152
  19. Lahmiri, S., Shmuel, A. (2019). Detection of Parkinson’s disease based on voice patterns ranking and optimized support vector machine. Biomedical Signal Processing and Control, 49, 427–433. doi: https://doi.org/10.1016/j.bspc.2018.08.029
  20. Brusco, M. J., Voorhees, C. M., Calantone, R. J., Brady, M. K., Steinley, D. (2018). Integrating linear discriminant analysis, polynomial basis expansion, and genetic search for two-group classification. Communications in Statistics - Simulation and Computation, 48 (6), 1623–1636. doi: https://doi.org/10.1080/03610918.2017.1419262
  21. Ren, R., Han, K., Zhao, P., Shi, J., Zhao, L., Gao, D. et. al. (2019). Identification of asphalt fingerprints based on ATR-FTIR spectroscopy and principal component-linear discriminant analysis. Construction and Building Materials, 198, 662–668. doi: https://doi.org/10.1016/j.conbuildmat.2018.12.009
  22. Ali, L., Zhu, C., Zhang, Z., Liu, Y. (2019). Automated Detection of Parkinson’s Disease Based on Multiple Types of Sustained Phonations Using Linear Discriminant Analysis and Genetically Optimized Neural Network. IEEE Journal of Translational Engineering in Health and Medicine, 7, 1–10. doi: https://doi.org/10.1109/jtehm.2019.2940900
  23. A Abdillah, A. A. (2019). Support vector machines untuk menyelesaikan masalah klasifikasi pada pengenalan pola. Jurnal Poli-Teknologi, 18 (2). doi: https://doi.org/10.32722/pt.v18i2.1432
  24. Abdillah, A. A., Murfi, H., Satria, Y. (2015). Uji Kinerja Learning to Rank dengan Metode Support Vector Regression. IndoMS Journal on Industrial and Applied Mathematics, 2 (1), 15–25. Available at: https://adoc.pub/uji-kinerja-learning-to-rank-dengan-metode-support-vector-re.html
  25. Ratna S, D., Setyono, B., Herdha, T. (2016). Bullet Image Classification using Support Vector Machine (SVM). Journal of Physics: Conference Series, 693, 012009. doi: https://doi.org/10.1088/1742-6596/693/1/012009
  26. Rokhmatuloh, Murfi, H., Ardiansyah (2013). A method to derive optimal decision boundary in SVM method for forest and non-forest classification in Indonesia. 34th Asian Conference on Remote Sensing 2013, ACRS (2013). Bali, 2431–2442.
  27. Amin, M. Z., Ali, A. (2018). Caesarian Section Classification Dataset Data Set. UCI Machine Learning Repository. Available at: https://archive.ics.uci.edu/ml/datasets/Caesarian+Section+Classification+Dataset
  28. Gorunescu, F. (2011). Data Mining: Concepts, Models and Techniques. Springer, 360. doi: https://doi.org/10.1007/978-3-642-19721-5

##submission.downloads##

Опубліковано

2021-10-31

Як цитувати

Abdillah, A. A., Azwardi, A., Permana, S., Susanto, I., Zainuri, F., & Arifin, S. (2021). Оцінка ефективності лінійного дискримінантного аналізу та методу опорних векторів для класифікації кесаревого розтину. Eastern-European Journal of Enterprise Technologies, 5(2 (113), 37–43. https://doi.org/10.15587/1729-4061.2021.242798