Прогнозування вихідної електричної потужності електростанції комбінованого циклу з використанням алгоритмів регресії в машинному навчанні

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2021.245663

Ключові слова:

електростанції комбінованого циклу, машинне навчання, прогнозні моделі, лінійна регресія

Анотація

Для контролю продуктивності і відповідно ефективності електростанції комбінованого циклу (ЕСКЦ), окрім оптимального використання її вихідної потужності, вкрай важливе прогнозування вихідної електричної потужності при повному навантаженні. У даній роботі вихідна електрична потужність ЕСКЦ при повному навантаженні була спрогнозована з використанням практично ефективних алгоритмів машинного навчання, включаючи лінійну регресію, гребеневу регресію, регресію ласо, регресію еластична мережа, регресію випадковий ліс і регресію градієнтний бустинг. Вихідні дані були отримані з діючої конфіденційної електростанції, що працювала при повному навантаженні протягом 6 років, з чотирма основними характеристиками: температура навколишнього середовища, відносна вологість, атмосферний тиск і вакуум на вихлопі, а також одним цільовим показником (вихідна електрична потужність за годину). Використовувалися різні показники ефективності регресії, включаючи R2 (коефіцієнт детермінації), MAE (середня абсолютна помилка), MSE (середньоквадратична помилка), RMSE (корінь середньоквадратичної помилки) і MAPE (середня абсолютна процентна помилка). Результати дослідження показали, що модель регресії градієнтний бустинг перевершує інші моделі з використанням і без використання методу зменшення розмірності (МГК) з найвищим R2 0,912 і 0,872 відповідно і має найнижчу MAPE 0,872 % і 1,039 % відповідно. Крім того, ефективність прогнозування дещо знизилася після використання методу зменшення розмірності майже у всіх використовуваних алгоритмах регресії. Новизна даної роботи полягає у прогнозуванні вихідної електричної потужності ЕСКЦ на основі декількох характеристик з використанням більш простих алгоритмів, ніж описані алгоритми глибокого навчання і нейронних мереж разом узяті. Це забезпечує зниження витрат та спрощення процедури для кожного з них, що, однак, призводить до практично прийнятних результатів відповідно до використовуваних оціночних показників

Спонсор дослідження

  • The authors would like to thank the students Rami Sayoori, Mousa Tawasha, Ayham Bushnaq, and Mohammad Alshanawani for their related-assistance to this study.

Біографії авторів

Nader S. Santarisi, Applied Science Private University

Doctor, Associate Professor

Department of Mechanical and Industrial Engineering

Sinan S. Faouri, Applied Science Private University

Doctor, Assistant Professor

Department of Mechanical and Industrial Engineering

Посилання

  1. Hoang, T.-D., Pawluskiewicz, D. K. (2016). The efficiency analysis of different combined cycle power plants based on the impact of selected parameters. International Journal of Smart Grid and Clean Energy, 5 (2), 77–85. doi: https://doi.org/10.12720/sgce.5.2.77-85
  2. Combined cycle power plant: how it works. Available at: https://www.ge.com/gas-power/resources/education/combined-cycle-power-plants
  3. Tüfekci, P. (2014). Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods. International Journal of Electrical Power & Energy Systems, 60, 126–140. doi: https://doi.org/10.1016/j.ijepes.2014.02.027
  4. Moayedi, H., Mosavi, A. (2021). Electrical Power Prediction through a Combination of Multilayer Perceptron with Water Cycle Ant Lion and Satin Bowerbird Searching Optimizers. Sustainability, 13 (4), 2336. doi: https://doi.org/10.3390/su13042336
  5. Sholahudin, S., Han, H. (2015). Heating Load Predictions using The Static Neural Networks Method. International Journal of Technology, 6 (6), 946. doi: https://doi.org/10.14716/ijtech.v6i6.1902
  6. Dehghani Samani, A. (2018). Combined cycle power plant with indirect dry cooling tower forecasting using artificial neural network. Decision Science Letters, 7, 131–142. doi: https://doi.org/10.5267/j.dsl.2017.6.004
  7. Çelik, Ö. (2018). A Research on Machine Learning Methods and Its Applications. Journal of Educational Technology and Online Learning, 1 (3), 25–40. doi: https://doi.org/10.31681/jetol.457046
  8. Brownlee, J. (2016). Linear Regression for Machine Learning. Machine Learning Algorithms. Available at: https://machinelearningmastery.com/linear-regression-for-machine-learning/
  9. Kumari, K., Yadav, S. (2018). Linear regression analysis study. Journal of the Practice of Cardiovascular Sciences, 4 (1), 33. doi: https://doi.org/10.4103/jpcs.jpcs_8_18
  10. Van Der Maaten, L., Postma, E., van den Herik, J. (2009). Dimensionality Reduction: A Comparative Review. Available at: https://lvdmaaten.github.io/publications/papers/TR_Dimensionality_Reduction_Review_2009.pdf
  11. Mladenić, D. (2006). Feature Selection for Dimensionality Reduction. Lecture Notes in Computer Science, 84–102. doi: https://doi.org/10.1007/11752790_5
  12. Ringnér, M. (2008). What is principal component analysis? Nature Biotechnology, 26 (3), 303–304. doi: https://doi.org/10.1038/nbt0308-303
  13. Sneiderman, R. (2020). From Linear Regression to Ridge Regression, the Lasso, and the Elastic Net. And why you should learn alternative regression techniques. Available at: https://towardsdatascience.com/from-linear-regression-to-ridge-regression-the-lasso-and-the-elastic-net-4eaecaf5f7e6
  14. Raita, Y., Camargo, C. A., Macias, C. G., Mansbach, J. M., Piedra, P. A., Porter, S. C. et. al. (2020). Machine learning-based prediction of acute severity in infants hospitalized for bronchiolitis: a multicenter prospective study. Scientific Reports, 10 (1). doi: https://doi.org/10.1038/s41598-020-67629-8
  15. Chahboun, S., Maaroufi, M. (2021). Principal Component Analysis and Machine Learning Approaches for Photovoltaic Power Prediction: A Comparative Study. Applied Sciences, 11 (17), 7943. doi: https://doi.org/10.3390/app11177943
  16. Kaya, H., Tüfekci, P., Gürgen, S. F. (2012). Local and Global Learning Methods for Predicting Power of a Combined Gas & Steam Turbine. International Conference on Emerging Trends in Computer and Electronics Engineering (ICETCEE'2012), 13–18. Available at: http://psrcentre.org/images/extraimages/70.%20312595.pdf
  17. Elfaki, E., Hassan, A. H. A. (2018). Prediction of Electrical Output Power of Combined Cycle Power Plant Using Regression ANN Model. International Journal of Computer Science and Control Engineering, 6 (2), 9–21. Available at: https://zenodo.org/record/1285164#.YaX5l1VByUk
  18. Elfaki, E. A., Ahmed, A. H. (2018). Prediction of Electrical Output Power of Combined Cycle Power Plant Using Regression ANN Model. Journal of Power and Energy Engineering, 06 (12), 17–38. doi: https://doi.org/10.4236/jpee.2018.612002
  19. Plis, M., Rusinowski, H. (2018). A mathematical model of an existing gas-steam combined heat and power plant for thermal diagnostic systems. Energy, 156, 606–619. doi: https://doi.org/10.1016/j.energy.2018.05.113
  20. Wood, D. A. (2020). Combined cycle gas turbine power output prediction and data mining with optimized data matching algorithm. SN Applied Sciences, 2 (3). doi: https://doi.org/10.1007/s42452-020-2249-7
  21. Liu, Z., Karimi, I. A. (2020). Gas turbine performance prediction via machine learning. Energy, 192, 116627. doi: https://doi.org/10.1016/j.energy.2019.116627
  22. Bartolini, C. M., Caresana, F., Comodi, G., Pelagalli, L., Renzi, M., Vagni, S. (2011). Application of artificial neural networks to micro gas turbines. Energy Conversion and Management, 52 (1), 781–788. doi: https://doi.org/10.1016/j.enconman.2010.08.003
  23. Anvari, S., Taghavifar, H., Saray, R. K., Khalilarya, S., Jafarmadar, S. (2015). Implementation of ANN on CCHP system to predict trigeneration performance with consideration of various operative factors. Energy Conversion and Management, 101, 503–514. doi: https://doi.org/10.1016/j.enconman.2015.05.045
  24. Fast, M., Assadi, M., De, S. (2009). Development and multi-utility of an ANN model for an industrial gas turbine. Applied Energy, 86 (1), 9–17. doi: https://doi.org/10.1016/j.apenergy.2008.03.018
  25. Rossi, F., Velázquez, D., Monedero, I., Biscarri, F. (2014). Artificial neural networks and physical modeling for determination of baseline consumption of CHP plants. Expert Systems with Applications, 41 (10), 4658–4669. doi: https://doi.org/10.1016/j.eswa.2014.02.001
  26. Khosravani, H., Castilla, M., Berenguel, M., Ruano, A., Ferreira, P. (2016). A Comparison of Energy Consumption Prediction Models Based on Neural Networks of a Bioclimatic Building. Energies, 9 (1), 57. doi: https://doi.org/10.3390/en9010057
  27. Arferiandi, Y. D., Caesarendra, W., Nugraha, H. (2021). Heat Rate Prediction of Combined Cycle Power Plant Using an Artificial Neural Network (ANN) Method. Sensors, 21 (4), 1022. doi: https://doi.org/10.3390/s21041022
  28. Kaggle. Available at: https://www.kaggle.com/gova26/airpressure
  29. Linear regression. Wikipedia. Available at: https://en.wikipedia.org/wiki/Linear_regression
  30. Ridge Regression. Available at: https://andreaprovino.it/ridge-regression/
  31. A Complete understanding of LASSO Regression (2020). Available at: https://www.mygreatlearning.com/blog/understanding-of-lasso-regression/
  32. Brownlee, J. (2020). How to Develop Elastic Net Regression Models in Python. Python Machine Learning. Available at: https://machinelearningmastery.com/elastic-net-regression-in-python/
  33. Chakure, A. (2019). Random Forest Regression. Available at: https://medium.com/swlh/random-forest-and-its-implementation-71824ced454f
  34. Brownlee, J. (2020). How to Develop a Gradient Boosting Machine Ensemble in Python. Ensemble Learning. Available at: https://machinelearningmastery.com/gradient-boosting-machine-ensemble-in-python/
  35. Thakur, M. Coefficient of Determination Formula. Available at: https://www.educba.com/coefficient-of-determination-formula/
  36. Enders, F. B. Coefficient of determination. Available at: https://www.britannica.com/science/coefficient-of-determination

##submission.downloads##

Опубліковано

2021-12-24

Як цитувати

Santarisi, N. S., & Faouri, S. S. (2021). Прогнозування вихідної електричної потужності електростанції комбінованого циклу з використанням алгоритмів регресії в машинному навчанні. Eastern-European Journal of Enterprise Technologies, 6(8 (114), 16–26. https://doi.org/10.15587/1729-4061.2021.245663

Номер

Розділ

Енергозберігаючі технології та обладнання