Встановлення закономірностей передачі тепла через вогнезахищену тканину до деревини

Автор(и)

  • Юрій Володимирович Цапко Національний університет біоресурсів і природокористування України; Київський національний університет будівництва і архітектури, Україна https://orcid.org/0000-0003-0625-0783
  • Олексій Юрійович Цапко Український державний науково-дослідний інститут “Ресурсˮ; Київський національний університет будівництва і архітектури, Україна https://orcid.org/0000-0003-2298-068X
  • Ольга Петрівна Бондаренко Київський національний університет будівництва і архітектури, Україна https://orcid.org/0000-0002-8164-6473

DOI:

https://doi.org/10.15587/1729-4061.2021.245713

Ключові слова:

вогнезахист деревини, спучуючі покриття, теплопровідність, оброблення поверхні, теплофізичні властивості

Анотація

Проведеними дослідженнями процесу теплопровідності захисного екрану з вогнезахищеної тканини при термічній дії на деревину є закономірним процес передавання температури. Доведено, що залежно від теплофізичних властивостей покриття вогнезахищеної тканини це може призвести до різного ступеня передавання тепла. Тому постає необхідність дослідження умов для встановлення низької теплопровідності та встановлення механізму гальмування передачі тепла до деревини. У зв’язку з цим розроблена математична модель процесу передавання тепла до деревин при її захисті екраном з вогнезахищеної тканини. За експериментальними даними з визначення температури на не обігрівній поверхні тканини і отриманими залежностями визначено густину теплового потоку, що передається до деревини через вогнезахищену тканину. Так, з наростанням температури густина теплового потоку до поверхні деревини через захисний екран з вогнезахищеної захищеної покриттям на основі «Firewall-Attic» збільшується до значення понад 16 кВт/м2, що не достатнє для займання деревини. Натомість, густина теплового потоку через захисний екран з вогнезахищеної тканини захищеної покриттям на основі «Firewall-Wood» не перевищила 14 кВт/м2. Це дозволяє стверджувати про відповідність виявленого механізму формування теплоізолювальних властивостей при захисті деревини та практичну привабливість запропонованих технологічних рішень. Таким чином, особливості гальмування процесу передавання тепла до деревини через захисний екран з вогнезахищеної тканини при дії радіаційної панелі, полягають в утворені тепло ізолювального шару піно коксу при розкладі покриття. Так, на поверхні вогнезахищеної тканини була створена температура понад 280 °С, а на не обігрівній поверхні тканини не перевищила 220 °С, що недостатня для займання деревини.

Спонсор дослідження

  • Автори висловлюють подяку за фінансову підтримку роботи, виконаної в рамках бюджету фінансування № 0121U001007, а також на розробку наукових тем у програмі наукового співробітництва COST Action FP 1407 «Розуміння модифікації деревини за допомогою інтегрованого наукового та екологічного підходу» в рамках програми Європейського Союзу HORIZON2020.

Біографії авторів

Юрій Володимирович Цапко, Національний університет біоресурсів і природокористування України; Київський національний університет будівництва і архітектури

Доктор технічних наук, професор

Кафедра технологій та дизайну виробів з деревини

Науково-дослідний інститут в’яжучих речовин і матеріалів ім. В. Д. Глуховського

Олексій Юрійович Цапко, Український державний науково-дослідний інститут “Ресурсˮ; Київський національний університет будівництва і архітектури

Доктор філософії, старший науковий співробітник

Відділ дослідження якості та умов зберігання нафтопродуктів та промислової групи товарів

Науково-дослідний інститут в’яжучих речовин і матеріалів ім. В. Д. Глуховського

Ольга Петрівна Бондаренко, Київський національний університет будівництва і архітектури

Кандидат технічних наук, доцент

Кафедра будівельних матеріалів

Посилання

  1. Jun, Z., Wei, X., Xingzhong, W., Peiwei, G., Zhihua, Y., Lihai, S., Jiang, W. (2020). Application and research status of concrete canvas and its application prospect in emergency engineering. Journal of Engineered Fibers and Fabrics, 15, 155892502097575. doi: https://doi.org/10.1177/1558925020975759
  2. Xu, J., Zhang, J. Y., Xu, J., Chang, Y., Shi, F., Zhang, Z., Zhang, H. (2020). Design of functional cotton fabric via modified carbon nanotubes. Pigment & Resin Technology, 49 (1), 71–78. doi: https://doi.org/10.1108/prt-03-2019-0032
  3. Xu, J., Zhang, J., Xu, J., Miao, G., Feng, L., Zhang, Z., Zhang, H. (2019). Synthesis and properties of cotton fabric functionalized by dimethyl phosphite and perfluorohexyl group grafted graphene oxide. Pigment & Resin Technology, 48 (6), 515–522. doi: https://doi.org/10.1108/prt-02-2019-0018
  4. Shi, F., Xu, J., Zhang, Z. (2019). Study on UV-protection and hydrophobic properties of cotton fabric functionalized by graphene oxide and silane coupling agent. Pigment & Resin Technology, 48 (3), 237–242. doi: https://doi.org/10.1108/prt-09-2018-0098
  5. Choi, K., Seo, S., Kwon, H., Kim, D., Park, Y. T. (2018). Fire protection behavior of layer-by-layer assembled starch–clay multilayers on cotton fabric. Journal of Materials Science, 53 (16), 11433–11443. doi: https://doi.org/10.1007/s10853-018-2434-x
  6. Tausarova, B. R., Stasenko, A. Yu. (2019). Giving flame retardant properties to cellulosic textile materials using sol-gel technology. Khimiya Rastitel'nogo Syr'ya, 4, 365–372. doi: https://doi.org/10.14258/jcprm.2019044286
  7. Chan, S. Y., Si, L., Lee, K. I., Ng, P. F., Chen, L., Yu, B. et. al. (2017). A novel boron–nitrogen intumescent flame retardant coating on cotton with improved washing durability. Cellulose, 25 (1), 843–857. doi: https://doi.org/10.1007/s10570-017-1577-2
  8. Zhou, S., Huangfu, W., You, F., Li, D., Fan, D. (2019). Flame Retardancy and Mechanism of Cotton Fabric Finished by Phosphorus Containing SiO2 Hybrid Sol. 2019 9th International Conference on Fire Science and Fire Protection Engineering (ICFSFPE). doi: https://doi.org/10.1109/icfsfpe48751.2019.9055847
  9. Vachnina, T. N., Susoeva, I. V., Titunin, A. A. (2020). Improvement of fire protection of wood board and textile materials for premises with a massive stay of people. IOP Conference Series: Materials Science and Engineering, 962, 022008. doi: https://doi.org/10.1088/1757-899x/962/2/022008
  10. Zhu, H., Kannan, K. (2020). Determination of melamine and its derivatives in textiles and infant clothing purchased in the United States. Science of The Total Environment, 710, 136396. doi: https://doi.org/10.1016/j.scitotenv.2019.136396
  11. Skorodumova, O., Tarakhno, O., Chebotaryova, O., Hapon, Y., Emen, F. M. (2020). Formation of Fire Retardant Properties in Elastic Silica Coatings for Textile Materials. Materials Science Forum, 1006, 25–31. doi: https://doi.org/10.4028/www.scientific.net/msf.1006.25
  12. Tsapko, Y., Tsapko, О., Bondarenko, O. (2020). Determination of the laws of thermal resistance of wood in application of fire-retardant fabric coatings. Eastern-European Journal of Enterprise Technologies, 2 (10 (104)), 13–18. doi: https://doi.org/10.15587/1729-4061.2020.200467
  13. Tsapko, Y., Lomaha, V., Tsapko, А., Mazurchuk, S., Horbachova, O., Zavialov, D. (2020). Determination of regularities of heat resistance under flame action on wood wall with fire-retardant varnish. Eastern-European Journal of Enterprise Technologies, 4 (10 (106)), 55–60. doi: https://doi.org/10.15587/1729-4061.2020.210009
  14. Tsapko, Y., Zavialov, D., Bondarenko, O., Marchenco, N., Mazurchuk, S., Horbachova, O. (2019). Determination of thermal and physical characteristics of dead pine wood thermal insulation products. Eastern-European Journal of Enterprise Technologies, 4 (10 (100)), 37–43. doi: https://doi.org/10.15587/1729-4061.2019.175346
  15. Potter, M. C. (2019). Engineering analysis. Springer, 434. doi: https://doi.org/10.1007/978-3-319-91683-5
  16. Jannot, Y., Degiovanni, A., Schick, V., Meulemans, J. (2020). Thermal diffusivity measurement of insulating materials at high temperature with a four-layer (4L) method. International Journal of Thermal Sciences, 150, 106230. doi: https://doi.org/10.1016/j.ijthermalsci.2019.106230
  17. Zhang, H., Li, Y.-M., Tao, W.-Q. (2017). Theoretical accuracy of anisotropic thermal conductivity determined by transient plane source method. International Journal of Heat and Mass Transfer, 108, 1634–1644. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.025
  18. Janna, W. S. (2018). Engineering Heat Transfer. CRC Press, 692. doi: https://doi.org/10.1201/9781439883143
  19. Bartlett, A. I., Hadden, R. M., Bisby, L. A. (2018). A Review of Factors Affecting the Burning Behaviour of Wood for Application to Tall Timber Construction. Fire Technology, 55 (1), 1–49. doi: https://doi.org/10.1007/s10694-018-0787-y
  20. Tsapko, Y., Tsapko, А., Bondarenko, O., Chudovska, V. (2021). Thermophysical characteristics of the formed layer of foam coke when protecting fabric from fire by a formulation based on modified phosphorus-ammonium compounds. Eastern-European Journal of Enterprise Technologies, 3 (10 (111)), 34–41. doi: https://doi.org/10.15587/1729-4061.2021.233479
  21. Tsapko, Y., Tsapko, A., Bondarenko, O. P. (2020). Research of Conditions of Removal of Fire Protection from Building Construction. Key Engineering Materials, 864, 141–148. doi: https://doi.org/10.4028/www.scientific.net/kem.864.141
  22. Tsapko, Y. V., Tsapko, A. Y., Bondarenko, O. P. (2020). Modeling of thermal conductivity of reed products. IOP Conference Series: Materials Science and Engineering, 907 (1), 012057. doi: https://doi.org/10.1088/1757-899x/907/1/012057

##submission.downloads##

Опубліковано

2021-12-29

Як цитувати

Цапко, Ю. В., Цапко, О. Ю., & Бондаренко, О. П. (2021). Встановлення закономірностей передачі тепла через вогнезахищену тканину до деревини. Eastern-European Journal of Enterprise Technologies, 6(10 (114), 49–56. https://doi.org/10.15587/1729-4061.2021.245713

Номер

Розділ

Екологія