Порівняння впливу поверхнево-активних речовин на термокінетичні характеристики шлаколужного цементу
DOI:
https://doi.org/10.15587/1729-4061.2021.245916Ключові слова:
шлаколужний цемент, поверхнево-активна речовина, тріщиностійкість, тепловиділення цементного тіста, термонапружений станАнотація
Підвищення довговічності бетонних та залізобетонних конструкцій за критерієм тріщиностійкості є актуальною задачею будівельного матеріалознавства. Для вирішування цієї задачі запропоновано ефективні рішення щодо регулювання термокінечних характеристик шлаколужного цементу (ШЛЦ) поверхнево-активними речовинами (ПАР) різної хімічної природи для управління термонапруженим станом бетону на його основі (ШЛЦ бетон).
За допомогою методу калориметрії показано, що проблемним є регулювання структуроутворення ШЛЦ аніоноактивними ПАР на основі складних поліефірів. Це обумовлено нестабільністю молекулярної будови ПАР в гідратаційному середовищі ШЛЦ через руйнування складноефірних зв’язків внаслідок лужного гідролізу.
За допомогою термокінетичного аналізу визначено ефективність використання аніоноактивних ПАР, які не містять складноефірних зв’язків, в ролі регуляторів тріщиностійкості ШЛЦ бетону. Прості поліефіри і багатоатомні спирти забезпечують можливість регулювання тривалості індукційного періоду при забезпеченні необхідної повноти гідратації ШЛЦ в контрольні терміни. Показано ефективність катіоноактивних ПАР, які характеризуються стабільністю молекулярної будови в гідратаційному середовищі ШЛЦ і підвищеним рівнем адсорбуючої здатності.
Показано зменшення ефективності ПАР за впливом на тепловиділення ШЛЦ в ряду: лужна сіль карбонової кислоти>сіль четвертинної амонієвої сполуки>простий поліефір>поліспирт>складний поліефір.
Отримані результати є важливими з огляду на можливість ефективного регулювання тепловиділення ШЛЦ шляхом впливу на структуроутворення ПАР певної молекулярної будови для прогнозованого зменшення тріщиноутворення в термонапруженому стані і відповідного підвищення довговічності конструкцій
Спонсор дослідження
- Автори висловлюють подяку за фінансову підтримку роботи, яка виконується в рамках бюджетного фінансування № 1020U001010, а також за розвиток теми досліджень по програмі наукового співробітництва COST Action CA15202 SARCOS «Self-Healing concrete: the path to sustainable construction», яка дії в рамках проекту європейського рівня HORIZON 2020, http://www.cost.eu/COST_Actions/ca/CA15202.
Посилання
- Kropyvnytska, T., Semeniv, R., Kotiv, R., Novytskyi, Y. (2021). Effects of Nano-liquids on the Durability of Brick Constructions for External Walls. Lecture Notes in Civil Engineering, 237–244. doi: https://doi.org/10.1007/978-3-030-57340-9_29
- Gogol, M., Kropyvnytska, T., Galinska, T., Hajiyev, M. (2020). Ways to Improve the Combined Steel Structures of Coatings. Lecture Notes in Civil Engineering, 53–58. doi: https://doi.org/10.1007/978-3-030-42939-3_6
- Tsapko, Y., Vasylyshyn, R., Melnyk, O., Lomaha, V., Tsapko, А., Bondarenko, O. (2021). Regularities in the washing out of water-soluble phosphorus-ammonium salts from the fire-protective coatings of timber through a polyurethane shell. Eastern-European Journal of Enterprise Technologies, 2 (10 (110)), 51–58. doi: https://doi.org/10.15587/1729-4061.2021.229458
- Plugin, A. A., Borziak, O. S., Pluhin, O. A., Kostuk, T. A., Plugin, D. A. (2021). Hydration Products that Provide Water-Repellency for Portland Cement-Based Waterproofing Compositions and Their Identification by Physical and Chemical Methods. Lecture Notes in Civil Engineering, 328–335. doi: https://doi.org/10.1007/978-3-030-57340-9_40
- Kryvenko, P., Rudenko, I., Konstantynovskyi, O. (2020). Design of slag cement, activated by Na (K) salts of strong acids, for concrete reinforced with steel fittings. Eastern-European Journal of Enterprise Technologies, 6 (6 (108)), 26–40. doi: https://doi.org/10.15587/1729-4061.2020.217002
- Graham, P. C., Ballim, Y., Kazirukanyo, J. B. (2011). Effectiveness of the fineness of two South African Portland cements for controlling early-age temperature development in concrete. Journal of the South African Institution of Civil Engineering, 53 (1), 39–45. Available at: http://www.scielo.org.za/pdf/jsaice/v53n1/v53n1a05.pdf
- Utsi, S., Jonasson, J.-E. (2011). Estimation of the risk for early thermal cracking for SCC containing fly ash. Materials and Structures, 45 (1-2), 153–169. doi: https://doi.org/10.1617/s11527-011-9757-2
- Krivenko, P., Petropavlovskyi, O., Kovalchuk, O., Rudenko, I., Konstantynovskyi, O. (2020). Enhancement of alkali-activated slag cement concretes crack resistance for mitigation of steel reinforcement corrosion. E3S Web of Conferences, 166, 06001. doi: https://doi.org/10.1051/e3sconf/202016606001
- Fernandes, F., Manari, S., Aguayo, M., Santos, K., Oey, T., Wei, Z. et. al. (2014). On the feasibility of using phase change materials (PCMs) to mitigate thermal cracking in cementitious materials. Cement and Concrete Composites, 51, 14–26. doi: https://doi.org/10.1016/j.cemconcomp.2014.03.003
- Krivenko, P. (2017). Why Alkaline Activation – 60 Years of the Theory and Practice of Alkali-Activated Materials. Journal of Ceramic Science and Technology, 8 (3), 323–334. doi: https://doi.org/10.4416/JCST2017-00042
- Kovalchuk, O., Grabovchak, V., Govdun, Y. (2018). Alkali activated cements mix design for concretes application in high corrosive conditions. MATEC Web of Conferences, 230, 03007. doi: https://doi.org/10.1051/matecconf/201823003007
- Zhu, H., Liang, G., Li, H., Wu, Q., Zhang, C., Yin, Z., Hua, S. (2021). Insights to the sulfate resistance and microstructures of alkali-activated metakaolin/slag pastes. Applied Clay Science, 202, 105968. doi: https://doi.org/10.1016/j.clay.2020.105968
- Cyr, M., Pouhet, R. (2015). The frost resistance of alkali-activated cement-based binders. Handbook of Alkali-Activated Cements, Mortars and Concretes, 293–318. doi: https://doi.org/10.1533/9781782422884.3.293
- Shanahan, N., Tran, V., Zayed, A. (2016). Heat of hydration prediction for blended cements. Journal of Thermal Analysis and Calorimetry, 128 (3), 1279–1291. doi: https://doi.org/10.1007/s10973-016-6059-5
- Kostyuk, T., Vinnichenko, V., Plugin, A., Borziak, O., Iefimenko, A. (2021). Physicochemical studies of the structure of energy-saving compositions based on slags. IOP Conference Series: Materials Science and Engineering, 1021 (1), 012016. doi: https://doi.org/10.1088/1757-899x/1021/1/012016
- Jones, S., Hughes, D., Werner, O. R. (2018). Design considerations for raising the Hinze Dam mass concrete spillway. American Concrete Institute, ACI Special Publication, 4.1-4.30.
- Khalifah, H. A., Rahman, M. K., Al-Helal, Z., Al-Ghamdi, S. (2016). Stress generation in mass concrete blocks with fly ASH and silica fume – An experimental and numerical study. Sustainable Construction Materials and Technologies. doi: https://doi.org/10.18552/2016/scmt4s267
- Sanytsky, M., Usherov-Marshak, A., Kropyvnytska, T., Heviuk, I. (2020). Performance of multicomponent portland cements containing granulated blast furnace slag, zeolite, and limestone. Cement, Wapno, Beton, 25 (5), 416–427. doi: https://doi.org/10.32047/CWB.2020.25.5.7
- Runova, R., Gots, V., Rudenko, I., Konstantynovskyi, O., Lastivka, O. (2018). The efficiency of plasticizing surfactants in alkali-activated cement mortars and concretes. MATEC Web of Conferences, 230, 03016. doi: https://doi.org/10.1051/matecconf/201823003016
- Krivenko, P. V., Rudenko, I. I., Petropavlovskyi, O. M., Konstantynovskyi, O. P., Kovalchuk, A. V. (2019). Alkali-activated Portland cement with adjustable proper deformations for anchoring application. IOP Conference Series: Materials Science and Engineering, 708 (1), 012090. doi: https://doi.org/10.1088/1757-899x/708/1/012090
- Krivenko, P. V., Petropavlovskyi, O. M., Rudenko, I. I., Konstantynovskyi, O. P., Kovalchuk, A. V. (2020). Complex multifunctional additive for anchoring grout based on alkali-activated portland cement. IOP Conference Series: Materials Science and Engineering, 907 (1), 012055. doi: https://doi.org/10.1088/1757-899x/907/1/012055
- Plank, J. (2012). Superplasticizers – chemistry, applications and perspectives. 18th Inern. Baustofftagung. F.A. Finger-Institute fur Baustoffkunde. Bauhaus Unuversitat. Weimar, 1, 91–102.
- Safi, B., Benmounah, A., Saidi, M. (2011). Reología y potencial zeta de pastas de cemento con lodos de embalse calcinados y escorias granuladas de horno alto. Materiales de Construcción, 61 (303), 353–370. doi: https://doi.org/10.3989/mc.2011.61110
- Mikhailova, O., Rovnanik, P. (2018). Effect of polyethylene glycol on the rheological properties and heat of hydration of alkali activated slag pastes. IOP Conference Series: Materials Science and Engineering, 385, 012037. doi: https://doi.org/10.1088/1757-899x/385/1/012037
- Bílek, V., Kalina, L., Novotný, R., Tkacz, J., Pařízek, L. (2016). Some Issues of Shrinkage-Reducing Admixtures Application in Alkali-Activated Slag Systems. Materials, 9 (6), 462. doi: https://doi.org/10.3390/ma9060462
- Bílek, V., Kalina, L., Novotný, R. (2018). Polyethylene glycol molecular weight as an important parameter affecting drying shrinkage and hydration of alkali-activated slag mortars and pastes. Construction and Building Materials, 166, 564–571. doi: https://doi.org/10.1016/j.conbuildmat.2018.01.176
- Yamada, K. (2011). Basics of analytical methods used for the investigation of interaction mechanism between cements and superplasticizers. Cement and Concrete Research, 41 (7), 793–798. doi: https://doi.org/10.1016/j.cemconres.2011.03.007
- Rosen, M. J., Kunjappu, J. T. (2012). Surfactants and Interfacial Phenomena. John Wiley & Sons, Inc. doi: https://doi.org/10.1002/9781118228920
- Kryvenko, P., Rudenko, I., Konstantynovskyi, O., Boiko, O. (2021). Restriction of Cl- and SO42- Ions Transport in Alkali Activated Slag Cement Concrete in Seawater. IOP Conference Series: Materials Science and Engineering, 1164 (1), 012066. doi: https://doi.org/10.1088/1757-899x/1164/1/012066
- Kryvenko, P., Runova, R., Rudenko, I., Skorik, V., Omelchuk, V. (2017). Analysis of plasticizer effectiveness during alkaline cement structure formation. Eastern-European Journal of Enterprise Technologies, 4 (6 (88)), 35–41. doi: https://doi.org/10.15587/1729-4061.2017.106803
- Tong, S., Yuqi, Z., Qiang, W. (2021). Recent advances in chemical admixtures for improving the workability of alkali-activated slag-based material systems. Construction and Building Materials, 272, 121647. doi: https://doi.org/10.1016/j.conbuildmat.2020.121647
- Krivenko, P., Gots, V. I., Petropavlovskyi, O., Rudenko, I., Konstantynovskyi, O. (2021). Complex Shrinkage-Reducing Additives for Alkali Activated Slag Cement Fine Concrete. Solid State Phenomena, 321, 165–170. doi: https://doi.org/10.4028/www.scientific.net/ssp.321.165
- Pushkar, V. I. (2011). Efektyvnist suchasnykh plastyfikatoriv v shlakoluzhnykh tsementakh ta betonakh. Budivelni materialy, vyroby ta sanitarna tekhnika, 39, 69–73.
- Krivenko, P., Gots, V., Petropavlovskyi, O., Rudenko, I., Konstantynovskyi, O., Kovalchuk, A. (2019). Development of solutions concerning regulation of proper deformations in alkali-activated cements. Eastern-European Journal of Enterprise Technologies, 5 (6 (101)), 24–32. doi: https://doi.org/10.15587/1729-4061.2019.181150
- Chipakwe, V., Semsari, P., Karlkvist, T., Rosenkranz, J., Chelgani, S. C. (2020). A critical review on the mechanisms of chemical additives used in grinding and their effects on the downstream processes. Journal of Materials Research and Technology, 9 (4), 8148–8162. doi: https://doi.org/10.1016/j.jmrt.2020.05.080
- Gots, V., Lastivka, O., Volunska, E., Tomin, O. (2016). Recycling of auriferous ore flotation tailings in slag-alkaline cement. EUREKA: Physics and Engineering, 4, 11–16. doi: https://doi.org/10.21303/2461-4262.2016.000123
- Usherov-Marshak, A. V. (2011). Phenomenological approach to building materials development based on physicochemical analysis. Inorganic Materials, 47 (8), 926–929. doi: https://doi.org/10.1134/s0020168511080218
- Usherov-Marshak, A., Vaičiukynienė, D., Krivenko, P., Bumanis, G. (2021). Calorimetric Studies of Alkali-Activated Blast-Furnace Slag Cements at Early Hydration Processes in the Temperature Range of 20–80 °C. Materials, 14 (19), 5872. doi: https://doi.org/10.3390/ma14195872
- DSTU B EN 196-9:2015 (EN 196-9:2010, IDT). Methods of testing cement. Part 9: Heat of hydration - Semi-adiabatic method (2016). Kyiv. Available at: http://online.budstandart.com/ua/catalog/doc-page?id_doc=63733
- Usherov-Marshak, A. V., Kabus’, A. V. (2013). Calorimetric monitoring of early hardening of cement in the presence of admixtures. Inorganic Materials, 49 (4), 430–433. doi: https://doi.org/10.1134/s0020168513040183
- Usherov-Marshak, A. V., Kabus’, A. V. (2016). Functional kinetic analysis of the effect of admixtures on cement hardening. Inorganic Materials, 52 (4), 435–439. doi: https://doi.org/10.1134/s0020168516040129
- Krivenko, P., Petropavlovskiy, O., Rudenko, I., Lakusta, S. (2017). Control of early age cracking in early-strength concrete based on alkali-activated slag cement. Conference: 2nd International RILEM/COST Conference on Early Age Cracking and Serviceability in Cement-based Materials and Structures (EAC2). Vol. 2. Brussels. Available at: https://www.researchgate.net/publication/320306250_CONTROL_OF_EARLY_AGE_CRACKING_IN_EARLY-STRENGTH_CONCRETE_BASED_ON_ALKALI-ACTIVATED_SLAG_CEMENT
- Suraneni, P., Palacios, M., Flatt, R. J. (2016). New insights into the hydration of slag in alkaline media using a micro-reactor approach. Cement and Concrete Research, 79, 209–216. doi: https://doi.org/10.1016/j.cemconres.2015.09.015
- Rashad, A. M. (2013). A comprehensive overview about the influence of different additives on the properties of alkali-activated slag – A guide for Civil Engineer. Construction and Building Materials, 47, 29–55. doi: https://doi.org/10.1016/j.conbuildmat.2013.04.011
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2021 Pavlo Krivenko, Igor Rudenko, Oleksandr Konstantynovskyi
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.