Синтез прецизійної системи дозування рідких продуктів на базі електропневматичних комплексів
DOI:
https://doi.org/10.15587/1729-4061.2021.247187Ключові слова:
витиснення дози, ерліфтна система, надлишковий тиск, зворотній зв’язок, точність дозуванняАнотація
Розроблено математичну модель процесу дозування рідких продуктов (питна вода негазована). Модель враховує диференційні рівння зміни кінематичних параметрів рідини у каналах дозатора та відповідні прийняті початкові і граничні умови процесу. Граничні умови враховують вплив програмно встановлених режимів ерліфтного дозування за допомогою драйвера та геометрію продуктопроводу. Виміряне значення струму в мА (із точністю 0,001 мА) по відношенню до стандартної шкали Imin, Imax=4…20 мА.
Сформовано аналітичний опис окремих етапів процесу дозування із подальшим аналізом окремих етапів та прийнятих допущень
Отримана під час випробувань експериментального зразка дозатора точність повторювань витиснення дози склала межі ±0,35 % та 0,8 %. Отримані результати пов’язані із встановленою величиною маси дози 50 мл під час зміни початкового рівня рідини в резервуарі живильнику дозатора на 10 мм.
Запропоновано експериментальний стенд для дослідження функціонального мехатронного модуля дозування із програмно встановленими режимами формування та витіснення дози продукту. Стенд працює на базі пропорційних елементів із зворотнім зв’язком (4–20 мА) для сходинкового та синусоїдального законів керування тиском в дозаторі.
Обґрунтовано модель управління з робочими режимами дозування. Розроблені моделі управління базуються на основі пропорційних елементів і зворотного зв'язку.
В ході проведення фізичного на математичного моделювання визначено вплив окремих параметрів на точність формування дози продукту, а також знайдені шляхи забезпечення необхідного розподілення тиску стисненого повітря, за умов дотримання заданої продуктивності дозатора. Отримані результати досліджень дозволяють удосконалити роботу прецизійних систем дозування рідких продуктів на базі електропневматичних комплексів
Посилання
- Yang, A., Pu, J., Wong, C. B., Moore, P. (2009). By-pass valve control to improve energy efficiency of pneumatic drive system. Control Engineering Practice, 17 (6), 623–628. doi: https://doi.org/10.1016/j.conengprac.2008.10.013
- Šešlija, D., Čajetinac, S., Blagojević, V., Šulc, J. (2018). Application of pulse width modulation and by-pass valve control for increasing energy efficiency of pneumatic actuator system. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 232 (10), 1314–1324. doi: https://doi.org/10.1177/0959651818780858
- Kanno, T., Hasegawa, T., Miyazaki, T., Yamamoto, N., Haraguchi, D., Kawashima, K. (2018). Development of a Poppet-Type Pneumatic Servo Valve. Applied Sciences, 8 (11), 2094. doi: https://doi.org/10.3390/app8112094
- Lengerke, O., Martínez, C. V., Dutra, M. S. et. al. (2008). Mechatronics Design of a Low-Cost Packaging and Dosing Machine for Doughy Products. ABCM Symposium Series in Mechatronics, 3, 717–725. Available at: https://www.researchgate.net/publication/229040784_Mechatronics_Design_of_a_Low-Cost_Packaging_and_Dosing_Machine_for_Doughy_Products
- Balajka, J., Pavelec, J., Komora, M., Schmid, M., Diebold, U. (2018). Apparatus for dosing liquid water in ultrahigh vacuum. Review of Scientific Instruments, 89 (8), 083906. doi: https://doi.org/10.1063/1.5046846
- Aboulhassan, M. A., Souabi, S., Yaacoubi, A., Baudu, M. (2006). Removal of surfactant from industrial wastewaters by coagulation flocculation process. International Journal of Environmental Science & Technology, 3 (4), 327–332. doi: https://doi.org/10.1007/bf03325941
- Tilahun, M., Beshaw, M. (2020). Customer’s Perception and Preference towards Packaged Drinking Water. The Scientific World Journal, 2020, 1–11. doi: https://doi.org/10.1155/2020/6353928
- Lammerink, T. S. J., Elwenspoek, M., Fluitman, J. H. J. (1993). Integrated micro-liquid dosing system. [1993] Proceedings IEEE Micro Electro Mechanical Systems. doi: https://doi.org/10.1109/memsys.1993.296913
- Goubej, M., Schlegel, M. (2014). Robust PID Control of Electrical Drive with Compliant Load. IFAC Proceedings Volumes, 47 (3), 11781–11786. doi: https://doi.org/10.3182/20140824-6-za-1003.01006
- Lee, K. Y., El-Sharkawi, M. A. (Eds.) (2002). Modern Heuristic Optimization Techniques with Applications to Power Systems. IEEE Power Engineering Society. Available at: http://web.ecs.baylor.edu/faculty/lee/front_rev.pdf
- Hu, X., Eberhart, R. C., Shi, Y. (2003). Engineering optimization with particle swarm. Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS’03 (Cat. No.03EX706), 53–57. doi: https://doi.org/10.1109/sis.2003.1202247
- Behbahani, S. (2007). Practical and analytical studies on the development of formal evaluation and design methodologies for mechatronic systems. University of British Columbia, 164. doi: https://doi.org/10.14288/1.0080716
- Kryvoplias-Volodina, L., Gavva, O., Derenivska, A. (2018). Optimization of the synthesis of packing machines by the efficiency criteria. Scientific Works of National University of Food Technologies, 24 (5), 115–123. doi: https://doi.org/10.24263/2225-2924-2018-24-5-15
- Yang, D., Li, J., Du, C., Jiang, H., Zheng, K. (2015). Injection Performance of a Gas-Solid Injector Based on the Particle Trajectory Model. Advances in Materials Science and Engineering, 2015, 1–8. doi: https://doi.org/10.1155/2015/871067
- Gavva, O., Kryvoplias-Volodina, L., Yakymchuk, M. (2017). Structural-parametric synthesis of hydro-mechanical drive of hoisting and lowering mechanism of package-forming machines. Eastern-European Journal of Enterprise Technologies, 5 (7 (89)), 38–44. doi: https://doi.org/10.15587/1729-4061.2017.111552
- Viall, E. N., Qin Zhang. (2000). Determining the discharge coefficient of a spool valve. Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334). doi: https://doi.org/10.1109/acc.2000.879241
- Yatsun, S. F. (2008) Dinamicheskie rezhimy dvizheniya klapana pretsizionnogo dozatora zhidkih sred. Izv. vuzov. Seriya: «Mashinostroenie», 8, 37–48. Available at: https://cyberleninka.ru/article/n/dinamicheskie-rezhimy-dvizheniya-klapana-pretsizionnogo-dozatora-zhidkih-sred
- Behbahani, S., de Silva, C. W. (2005). Use of mechatronic design quotient in multi-criteria design, Proceedings of International Symposium on Collaborative Research in Applied Science (ISOCRIAS). Vancouver, 214–221.
- Borghi, M., Cantore, G., Milani, M., Paoluzzi, R. (1998). Analysis of hydraulic components using computational fluid dynamics models. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 212 (7), 619–629. doi: https://doi.org/10.1243/0954406981521583
- Zhang, T., Wei, C., Feng, C., Ren, Y., Wu, H., Preis, S. (2019). Advances in characteristics analysis, measurement methods and modelling of flow dynamics in airlift reactors. Chemical Engineering and Processing - Process Intensification, 144, 107633. doi: https://doi.org/10.1016/j.cep.2019.107633
- Zhang, H., Liu, M., Wang, B., Wang, X. (2011). Dense gas-particle flow in vertical channel by multi-lattice trajectory model. Science China Technological Sciences, 55 (2), 542–554. doi: https://doi.org/10.1007/s11431-011-4578-7
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2021 Oleksandr Gavva, Liudmyla Kryvoplias-Volodina, Sergii Blazhenko, Serhii Tokarchuk, Anastasiia Derenivska
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.