Поведінка розв'язання задачі теорії пружності для радіально-неоднорідного циліндра малої товщини
DOI:
https://doi.org/10.15587/1729-4061.2021.247500Ключові слова:
неосесиметричне завдання, радіально-неоднорідний циліндр, метод асимптотичного інтегрування, однорідні рішення, прикордонний шарАнотація
Вивчається неосесиметричне завдання теорії пружності для радіально-неоднорідного циліндра малої товщини. Передбачається, що модулями пружності є довільні позитивні шматково-безперервні функції змінної радіусу.
За допомогою методу асимптотичного інтегрування рівнянь теорії пружності, що базується на трьох ітераційних процесах, проведено якісний аналіз напружено-деформованого стану радіально-неоднорідного циліндра. На основі першого ітераційного процесу методу асимптотичного інтегрування рівнянь теорії пружності побудовано приватні рішення рівнянь рівноваги, у разі коли на бічній поверхні циліндра задано гладке навантаження. Проведено алгоритм побудови приватних розв'язків рівнянь рівноваги для спеціальних видів навантажень, бокова поверхня яких навантажена силами, що поліноміально залежать від осьової координати.
Побудовані однорідні рішення, тобто будь-які рішення рівнянь рівноваги, які задовольняють умові відсутності напруги на бічних поверхнях. Показано, що однорідні рішення складаються із трьох типів: проникаючого рішення, рішень типу простого крайового ефекту та рішень прикордонного шару. Встановлено характер напружено-деформованого стану. Отримано, що проникаюче рішення та рішення, що мають характер крайового ефекту, визначають внутрішній напружено-деформований стан радіально-неоднорідного циліндра. Рішення, що мають характер прикордонного шару, локалізовані у торців циліндра та при віддаленні від торців експонентно зменшуються. Ці рішення відсутні в прикладних теоріях оболонки.
На основі отриманих асимптотичних розкладів однорідних рішень можна провести оцінки для визначення області застосування існуючих прикладних теорій для циліндричних оболонок. Виходячи з побудованих рішень, можна запропонувати нову уточнену прикладну теорію.
Посилання
- Birman, V., Byrd, L. W. (2007). Modeling and Analysis of Functionally Graded Materials and Structures. Applied Mechanics Reviews, 60 (5), 195–216. doi: https://doi.org/10.1115/1.2777164
- Tokovyy, Y., Ma, C.-C. (2019). Elastic Analysis of Inhomogeneous Solids: History and Development in Brief. Journal of Mechanics, 35 (5), 613–626. doi: https://doi.org/10.1017/jmech.2018.57
- Akhmedov, N. K., Ustinov, Yu. A. (1988). On St. Venant's principle in the torsion problem for a laminated cylinder. Journal of Applied Mathematics and Mechanics, 52 (2), 207–210. doi: https://doi.org/10.1016/0021-8928(88)90136-0
- Ahmedov, N. K. (1997). Analiz pogranichnogo sloya v osesimmetrichnoy zadache teorii uprugosti dlya radial'no-sloistogo tsilindra i rasprostraneniya osesimmetrichnyh voln. Prikladnaya matematika i mekhanika, 61 (5), 863–872.
- Akhmedov, N., Akbarova, S., Ismayilova, J. (2019). Analysis of axisymmetric problem from the theory of elasticity for an isotropic cylinder of small thickness with alternating elasticity modules. Eastern-European Journal of Enterprise Technologies, 2 (7 (98)), 13–19. doi: https://doi.org/10.15587/1729-4061.2019.162153
- Ismayilova, J. (2019). Studying of elastic equilibrium of a small thickness isotropic cylinder with variable elasticity module. Transactions of NAS of Azerbaycan, ISSUE Mechanics, 39 (8), 17–23. Available at: http://transmech.imm.az/upload/articles/v-40/Jalala_Ismayilova_Trans_Mech_Vol_39_8_2019.pdf
- Ismayilova, J. J. (2017). The problem of torsion of a radially inhomogeneous cylinder. Bulletin of NTU “KhPI”. Series: Mechanical-technological systems and complexes, 16 (1238), 82–87. Available at: http://repository.kpi.kharkov.ua/handle/KhPI-Press/30089
- Ismayilova, D. D. (2017). Analysis of a problem of torsion of a cylinder with variable shear modulus with fastened lateral surface. Scientific works, 1, 88–93. Available at: http://www.aztu.edu.az/azp//elmi_tedqiqat/scientific_research_2/az/files/jurnal_2017_1/14.pdf
- Akhmedov, N. K., Akperova, S. B. (2011). Asymptotic analysis of a 3D elasticity problem for a radially inhomogeneous transversally isotropic hollow cylinder. Mechanics of Solids, 46 (4), 635–644. doi: https://doi.org/10.3103/s0025654411040133
- Huang, C. H., Dong, S. B. (2001). Analysis of laminated circular cylinders of materials with the most general form of cylindrical anisotropy. International Journal of Solids and Structures, 38 (34-35), 6163–6182. doi: https://doi.org/10.1016/s0020-7683(00)00374-7
- Lin, H.-C., Dong, S. B. (2006). On the Almansi-Michell Problems for an Inhomogeneous, Anisotropic Cylinder. Journal of Mechanics, 22 (1), 51–57. doi: https://doi.org/10.1017/s1727719100000782
- Horgan, C. O., Chan, A. M. (1999). The pressurized hollow cylinder or disk problem for functionally graded isotropic linearly elastic materials. Journal of Elasticity, 55, 43–59. doi: https://doi.org/10.1023/A:1007625401963
- Ieşan, D., Quintanilla, R. (2007). On the deformation of inhomogeneous orthotropic elastic cylinders. European Journal of Mechanics - A/Solids, 26 (6), 999–1015. doi: https://doi.org/10.1016/j.euromechsol.2007.03.004
- Grigorenko, A. Y., Yaremchenko, S. N. (2016). Analysis of the Stress–Strain State of Inhomogeneous Hollow Cylinders. International Applied Mechanics, 52 (4), 342–349. doi: https://doi.org/10.1007/s10778-016-0757-3
- Grigorenko, A. Y., Yaremchenko, S. N. (2019). Three-Dimensional Analysis of the Stress–Strain State of Inhomogeneous Hollow Cylinders Using Various Approaches. International Applied Mechanics, 55 (5), 487–494. doi: https://doi.org/10.1007/s10778-019-00970-2
- Tutuncu, N., Temel, B. (2009). A novel approach to stress analysis of pressurized FGM cylinders, disks and spheres. Composite Structures, 91 (3), 385–390. doi: https://doi.org/10.1016/j.compstruct.2009.06.009
- Zhang, X., Hasebe, N. (1999). Elasticity Solution for a Radially Nonhomogeneous Hollow Circular Cylinder. Journal of Applied Mechanics, 66 (3), 598–606. doi: https://doi.org/10.1115/1.2791477
- Tokovyy, Y., Ma, C.-C. (2016). Axisymmetric Stresses in an Elastic Radially Inhomogeneous Cylinder Under Length-Varying Loadings. Journal of Applied Mechanics, 83 (11). doi: https://doi.org/10.1115/1.4034459
- Liew, K. M., Kitipornchai, S., Zhang, X. Z., Lim, C. W. (2003). Analysis of the thermal stress behaviour of functionally graded hollow circular cylinders. International Journal of Solids and Structures, 40 (10), 2355–2380. doi: https://doi.org/10.1016/s0020-7683(03)00061-1
- Jabbari, M., Bahtui, A., Eslami, M. R. (2006). Axisymmetric Mechanical and Thermal Stresses in Thick Long FGM Cylinders. Journal of Thermal Stresses, 29 (7), 643–663. doi: https://doi.org/10.1080/01495730500499118
- Kordkheili, S. A. H., Naghdabadi, R. (2007). Thermoelastic Analysis of Functionally Graded Cylinders Under Axial Loading. Journal of Thermal Stresses, 31 (1), 1–17. doi: https://doi.org/10.1080/01495730701737803
- Tarn, J.-Q. (2001). Exact solutions for functionally graded anisotropic cylinders subjected to thermal and mechanical loads. International Journal of Solids and Structures, 38 (46-47), 8189–8206. doi: https://doi.org/10.1016/s0020-7683(01)00182-2
- Zimmerman, R. W., Lut, M. P. (1999). Thermal stresses and thermal expansion in a uniformly heated functionally graded cylinder. Journal of Thermal Stresses, 22 (2), 177–188. doi: https://doi.org/10.1080/014957399280959
- Tarn, J.-Q., Chang, H.-H. (2005). Extension, Torsion, Bending, Pressuring, and Shearing of Piezoelectric Circular Cylinders with Radial Inhomogeneity. Journal of Intelligent Material Systems and Structures, 16 (7-8), 631–641. doi: https://doi.org/10.1177/1045389x05048144
- Lur'e, A. I. (1970). Teoriya uprugosti. Moscow: Nauka, 939. Available at: https://lib-bkm.ru/load/86-1-0-2388
- Ustinov, Yu. A. (2006). Matematicheskaya teoriya poperechno-neodnorodnyh plit. Rostov-na Donu: OOO’’TSVVR’’, 257.
- Gol'denveyzer, A. L. (1963). Postroenie priblizhennoy teorii izgiba obolochki pri pomoschi asimptoticheskogo integrirovaniya uravneniy teorii uprugosti. Prikladnaya matematika i mekhanika, 27 (4), 593–608.
- Akhmedov, N. K., Sofiyev, A. H. (2019). Asymptotic analysis of three-dimensional problem of elasticity theory for radially inhomogeneous transversally-isotropic thin hollow spheres. Thin-Walled Structures, 139, 232–241. doi: https://doi.org/10.1016/j.tws.2019.03.022
- Mekhtiev, M. F. (2018). Vibrations of hollow elastic bodies. Springer, 212. doi: https://doi.org/10.1007/978-3-319-74354-7
- Mekhtiev, M. F. (2019). Asymptotic analysis of spatial problems in elasticity. Springer, 241. doi: https://doi.org/10.1007/978-981-13-3062-9
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2021 Natik Akhmedov, Sevda Akbarova
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.