Адаптація несучої конструкції напіввагона до перевезень високотемпературних вантажів
DOI:
https://doi.org/10.15587/1729-4061.2022.253770Ключові слова:
транспортна механіка, несуча конструкція, навантаженість кузова, температурний вплив, термостійкий флетАнотація
Проведено визначення навантаженості несучої конструкції універсального напіввагона при перевезенні в ньому вантажу з температурою 700 °С. Встановлено, що при цьому максимальні еквівалентні напруження значно перевищують допустимі. Максимальна температура вантажу, при якій показники міцності несучої конструкції напіввагона не перевищують допустимих значень, складає 94 °С. Разом з цим температура вантажу, що перевозиться у вагонах залізницею, може мати значно більші величини. У зв’язку з цим для можливості використання напіввагонів для перевезень вантажів з підвищеною температурою є можливим розміщувати їх у термостійких контейнерах відкритого типу – флетах. Тому в рамках дослідження запропоновано конструкцію флета з випуклими стінами. Така конфігурація бокових стін дозволяє підвищити корисний об’єм контейнера на 8 % у порівнянні з прототипом. В якості матеріалу флета застосовується композит з термостійкими властивостями. Для обґрунтування запропонованого рішення проведено розрахунок на міцність флета. Встановлено, що максимальні еквівалентні напруження в несучій конструкції флета складають близько 300 МПа та не перевищують допустимі.
Для визначення основних показників динаміки напіввагона, завантаженого флетами, проведено математичне моделювання його динамічної навантаженості. Результати розрахунку показали, що прискорення, які діють в центрі мас несучої конструкції напіввагона, складають близько 1,5 м/с2. Коефіцієнт вертикальної динаміки дорівнює 0,22. Розраховані показники динаміки знаходяться в межах допустимих значень.
Проведені дослідження сприятимуть підвищенню ефективності використання напіввагонів та створенню напрацювань щодо проектування інноваційних конструкцій транспортних засобів
Посилання
- Antipin, D. Y., Racin, D. Y., Shorokhov, S. G. (2016). Justification of a Rational Design of the Pivot Center of the Open-top Wagon Frame by means of Computer Simulation. Procedia Engineering, 150, 150–154. doi: https://doi.org/10.1016/j.proeng.2016.06.738
- Shukla, C. P., Bharti, P. K. (2015). Study and Analysis of Doors of BCNHL Wagons. International Journal of Engineering Research & Technology (IJERT), 4 (04), 1195–1200. Available at: https://www.ijert.org/research/study-and-analysis-of-doors-of-bcnhl-wagons-IJERTV4IS041031.pdf
- Patrascu, A. I., Hadar, A., Pastrama, S. D. (2019). Structural Analysis of a Freight Wagon with Composite Walls. Materiale Plastice, 57 (2), 140–151. doi: https://doi.org/10.37358/mp.20.2.5360
- Street, G. E., Mistry, P. J., Johnson, M. S. (2021). Impact Resistance of Fibre Reinforced Composite Railway Freight Tank Wagons. Journal of Composites Science, 5 (6), 152. doi: https://doi.org/10.3390/jcs5060152
- Kosobudzki, M., Jamroziak, K., Bocian, M., Kotowski, P., Zając, P. (2018). The analysis of structure of the repaired freight wagon. AIP Conference Proceedings. doi: https://doi.org/10.1063/1.5066492
- Płaczek, M., Wróbel, A., Olesiejuk, M. (2017). Modelling and arrangement of composite panels in modernized freight cars. MATEC Web of Conferences, 112, 06022. doi: https://doi.org/10.1051/matecconf/201711206022
- Liu, Y., Guan, M. (2019). Selected physical, mechanical, and insulation properties of carbon fiber fabric-reinforced composite plywood for carriage floors. European Journal of Wood and Wood Products, 77 (6), 995–1007. doi: https://doi.org/10.1007/s00107-019-01467-y
- Olmos Irikovich, Z., Rustam Vyacheslavovich, R., Mahmod Lafta, W., Yadgor Ozodovich, R. (2020). Development of new polymer composite materials for the flooring of rail carriage. International Journal of Engineering & Technology, 9 (2), 378. doi: https://doi.org/10.14419/ijet.v9i2.30519
- Bulychev, M., Antipin, D. (2019). Improvement of strength calculation procedure of car side upper framing in gondola cars. Bulletin of Bryansk state technical university, 3, 58–64. doi: https://doi.org/10.30987/article_5c8b5ceb111c58.12769482
- Fomin, O., Lovska, A. (2021). Determination of dynamic loading of bearing structures of freight wagons with actual dimensions. Eastern-European Journal of Enterprise Technologies, 2 (7 (110)), 6–14. doi: https://doi.org/10.15587/1729-4061.2021.220534
- Lovska, A., Fomin, O. (2020). A new fastener to ensure the reliability of a passenger car body on a train ferry. Acta Polytechnica, 60 (6). doi: https://doi.org/10.14311/ap.2020.60.0478
- Fomin, O., Gorbunov, M., Gerlici, J., Vatulia, G., Lovska, A., Kravchenko, K. (2021). Research into the Strength of an Open Wagon with Double Sidewalls Filled with Aluminium Foam. Materials, 14 (12), 3420. doi: https://doi.org/10.3390/ma14123420
- Píštěk, V., Kučera, P., Fomin, O., Lovska, A. (2020). Effective Mistuning Identification Method of Integrated Bladed Discs of Marine Engine Turbochargers. Journal of Marine Science and Engineering, 8 (5), 379. doi: https://doi.org/10.3390/jmse8050379
- Bondarenko, V., Skurikhin, D., Wojciechowski, J. (2019). The Application of Lithium-Ion Batteries for Power Supply of Railway Passenger Cars and Key Approaches for System Development. Smart and Green Solutions for Transport Systems, 114–125. doi: https://doi.org/10.1007/978-3-030-35543-2_10
- Fomin, O., Gerlici, J., Lovskaya, A., Kravchenko, K., Prokopenko, P., Fomina, A., Hauser, V. (2018). Research of the strength of the bearing structure of the flat wagon body from round pipes during transportation on the railway ferry. MATEC Web of Conferences, 235, 00003. doi: https://doi.org/10.1051/matecconf/201823500003
- Gallager, R. (1984). Metod konechnykh elementov. Osnovy. Moscow: Mir, 428.
- Alyamovskiy, A. A. (2007). SolidWorks/COSMOSWorks 2006–2007. Inzhenerniy analiz metodom konechnykh elementov. Moscow: DMK, 784.
- Alyamovskiy, A. A. (2010). COSMOSWorks. Osnovy rascheta konstruktsiy v srede SolidWorks. Moscow: DMK, 784.
- Vatulia, G., Rezunenko, M., Orel, Y., Petrenko, D. (2017). Regression equations for circular CFST columns carrying capacity evaluation. MATEC Web of Conferences, 107, 00051. doi: https://doi.org/10.1051/matecconf/201710700051
- Vatulia, G., Lobiak, A., Orel, Y. (2017). Simulation of performance of circular CFST columns under short-time and long-time load. MATEC Web of Conferences, 116, 02036. doi: https://doi.org/10.1051/matecconf/201711602036
- Vatulia, G. L., Petrenko, D. H., Novikova, M. A. (2017). Experimental estimation of load-carrying capacity of circular, square and rectangular CFTS columns. Naukovyi visnyk natsionalnoho hirnychoho universytetu, 6, 97–102. Available at: http://nbuv.gov.ua/UJRN/Nvngu_2017_6_16
- Lovska, A. (2018). Simulation of Loads on the Carrying Structure of an Articulated Flat Car in Combined Transportation. International Journal of Engineering & Technology, 7 (4.3), 140. doi: https://doi.org/10.14419/ijet.v7i4.3.19724
- Domin, Yu. V., Cherniak, H. Yu. (2003). Osnovy dynamiky vahoniv. Kyiv: KUETT, 269.
- Fomin, O., Lovska, A. (2020). Establishing patterns in determining the dynamics and strength of a covered freight car, which exhausted its resource. Eastern-European Journal of Enterprise Technologies, 6 (7 (108)), 21–29. doi: https://doi.org/10.15587/1729-4061.2020.217162
- Krol, O., Porkuian, O., Sokolov, V., Tsankov, P. (2019). Vibration stability of spindle nodes in the zone of tool equipment optimal parameters. Comptes rendus de l’Acade'mie bulgare des Sciences, 72 (11), 1546–1556. doi: https://doi.org/10.7546/crabs.2019.11.12
- Kir'yanov, D. V. (2006). Mathcad 13. Sankt-Peterburg: BKhV. Peterburg, 608.
- D'yakonov, V. (2000). MATHCAD 8/2000: spetsial'niy spravochnik. Sankt-Peterburg: Piter, 592.
- Alieinykov, I., Thamer, K. A., Zhuravskyi, Y., Sova, O., Smirnova, N., Zhyvotovskyi, R. et. al. (2019). Development of a method of fuzzy evaluation of information and analytical support of strategic management. Eastern-European Journal of Enterprise Technologies, 6 (2 (102)), 16–27. doi: https://doi.org/10.15587/1729-4061.2019.184394
- Kondratiev, A. (2019). Improving the mass efficiency of a composite launch vehicle head fairing with a sandwich structure. Eastern-European Journal of Enterprise Technologies, 6 (7 (102)), 6–18. doi: https://doi.org/10.15587/1729-4061.2019.184551
- Kondratiev, A., Gaidachuk, V., Nabokina, T., Kovalenko, V. (2019). Determination of the influence of deflections in the thickness of a composite material on its physical and mechanical properties with a local damage to its wholeness. Eastern-European Journal of Enterprise Technologies, 4 (1 (100)), 6–13. doi: https://doi.org/10.15587/1729-4061.2019.174025
- Fomin, O., Gerlici, J., Vatulia, G., Lovska, A., Kravchenko, K. (2021). Determination of the Loading of a Flat Rack Container during Operating Modes. Applied Sciences, 11 (16), 7623. doi: https://doi.org/10.3390/app11167623
- Lovska, A., Fomin, O., Píštěk, V., Kučera, P. (2020). Dynamic Load Modelling within Combined Transport Trains during Transportation on a Railway Ferry. Applied Sciences, 10 (16), 5710. doi: https://doi.org/10.3390/app10165710
- Lovska, A., Fomin, O., Kučera, P., Píštěk, V. (2020). Calculation of Loads on Carrying Structures of Articulated Circular-Tube Wagons Equipped with New Draft Gear Concepts. Applied Sciences, 10 (21), 7441. doi: https://doi.org/10.3390/app10217441
- Lukin, V. V., Shadur, L. A., Koturanov, V. I., Khokhlov, A. A., Anisimov, P. S. (2000). Konstruirovanie i raschet vagonov. Moscow, 731.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2022 Oleksij Fomin, Alyona Lovska, Maryna Khara, Iryna Nikolaienko, Andrii Lytvynenko, Sergiy Sova
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.