Побудова наближених рішень задачі рімана для двофазної течії незмішуваних рідин шляхом модифікації методу зникаючої в’язкості

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2022.258098

Ключові слова:

залежна від тиску в’язкість, модель Баклі-Леверетта, задача Рімана

Анотація

У роботі для наближеного рішення задачі Рімана застосовується метод зникаючої в’язкості. Цей підхід дозволяє досягти точності рішення та швидкості збіжності за рахунок дискредитації тимчасових і просторових змінних.

Отриманий метод забезпечує однорідність розчину без урахування капілярного тиску. Результати підтверджують незначний вплив умов зшивки у порівнянні з класичним підходом Дарсі.

Запропоновані рішення нового підходу спрямовані на вдосконалення методів та схем дискретизації як у просторі, так і в часі. Це досягається за рахунок мінімізації в’язкості та дискретизації у просторі і часі. Дані фактори мають першорядне значення для вивчення явищ зі змінною насиченістю в перехідному режимі та аналізу водно-нафтових потоків та міграцій у режимі реального часу, оскільки дискретизація у просторі і часі впливає на точність та збіжність розрахунків. Наш результат у вигляді отримання в’язких розчинів процесу фільтрації представляє інтерес з теоретичної точки зору. З практичної точки зору чисельне моделювання дозволяє здійснювати раннє прогнозування продуктивності. Таким чином, прикладним аспектом використання отриманого наукового результату є можливість удосконалення процесу за рахунок врахування впливу фаз потоків рідини

Біографії авторів

Yerbol Aldanov, Astana International University

Candidate of Physical and Mathematical Sciences, Associate Professor

Higher School of Information Technology and Engineering

Timur Toleuov, K. Zhubanov Aktobe Regional University

Doctoral Student

Department of Mathematics

Nurbolat Tasbolatuly, Astana International University

PhD, Associate Professor

Higher School of Information Technology and Engineering

Посилання

  1. Buckley, S. E., Leverett, M. C. (1942). Mechanism of Fluid Displacement in Sands. Transactions of the AIME, 146 (01), 107–116. doi: https://doi.org/10.2118/942107-g
  2. Welge, H. J. (1952). A Simplified Method for Computing Oil Recovery by Gas or Water Drive. Journal of Petroleum Technology, 4 (04), 91–98. doi: https://doi.org/10.2118/124-g
  3. Sheldon, J. W., Cardwell, W. T. (1959). One-Dimensional, Incompressible, Noncapillary, Two-Phase Fluid Flow in a Porous Medium. Transactions of the AIME, 216 (01), 290–296. doi: https://doi.org/10.2118/978-g
  4. McWhorter, D. B., Sunada, D. K. (1990). Exact integral solutions for two-phase flow. Water Resources Research, 26 (3), 399–413. doi: https://doi.org/10.1029/wr026i003p00399
  5. Muskat, M. (1946). The Flow of Homogeneous Fluids through Porous Media. The Mapple Press Company.
  6. Guérillot, D., Kadiri, M., Trabelsi, S. (2020). Buckley–Leverett Theory for Two-Phase Immiscible Fluids Flow Model with Explicit Phase-Coupling Terms. Water, 12 (11), 3041. doi: https://doi.org/10.3390/w12113041
  7. Bianchini, S., Bressan, A. (2005). Vanishing viscosity solutions of nonlinear hyperbolic systems. Annals of Mathematics, 161 (1), 223–342. doi: https://doi.org/10.4007/annals.2005.161.223
  8. Salas, M. D. (2007). The curious events leading to the theory of shock waves. Shock Waves, 16 (6), 477–487. doi: https://doi.org/10.1007/s00193-007-0084-z
  9. Alimhan, K. (2019). Further Results on Output Tracking for a Class of Uncertain High-Order Nonlinear Time-Delay Systems. PRZEGLĄD ELEKTROTECHNICZNY, 1 (5), 90–93. doi: https://doi.org/10.15199/48.2019.05.22
  10. Fusi, L., Farina, A., Saccomandi, G. (2015). Buckley--Leverett Equation with Viscosities and Relative Permeabilities Depending on Pressure. SIAM Journal on Applied Mathematics, 75 (5), 1983–2000. doi: https://doi.org/10.1137/15100566x
  11. Feo, A., Celico, F. (2021). High-resolution shock-capturing numerical simulations of three-phase immiscible fluids from the unsaturated to the saturated zone. Scientific Reports, 11 (1). doi: https://doi.org/10.1038/s41598-021-83956-w
  12. Pasquier, S., Quintard, M., Davit, Y. (2017). Modeling two-phase flow of immiscible fluids in porous media: Buckley-Leverett theory with explicit coupling terms. Physical Review Fluids, 2 (10). doi: https://doi.org/10.1103/physrevfluids.2.104101
  13. Bressan, A. (1995). The unique limit of the Glimm scheme. Archive for Rational Mechanics and Analysis, 130 (3), 205–230. doi: https://doi.org/10.1007/bf00392027
  14. Amaziane, B., Jurak, M., Pankratov, L., Piatnitski, A. (2018). Homogenization of nonisothermal immiscible incompressible two-phase flow in porous media. Nonlinear Analysis: Real World Applications, 43, 192–212. doi: https://doi.org/10.1016/j.nonrwa.2018.02.012
  15. Colombo, M., Crippa, G., Graff, M., Spinolo, L. V. (2021). On the role of numerical viscosity in the study of the local limit of nonlocal conservation laws. ESAIM: Mathematical Modelling and Numerical Analysis, 55 (6), 2705–2723. doi: https://doi.org/10.1051/m2an/2021073
  16. El-Khatib, N. A. F. (2001). The Application of Buckley-Leverett Displacement to Waterflooding in Non-Communicating Stratified Reservoirs. All Days. doi: https://doi.org/10.2118/68076-ms
  17. Owusu, P. A., DeHua, L., Nagre, R. D. (2014). Buckley-Leverett Displacement Theory for Waterflooding Performance in Stratified Reservoir. Petroleum & Coal, 56 (3), 267–281. Available at: https://www.vurup.sk/wp-content/uploads/dlm_uploads/2017/07/pc_3_2014_owusu_277_kor.pdf
  18. Zhao, L., Li, L., Wu, Z., Zhang, C. (2016). Analytical Model of Waterflood Sweep Efficiency in Vertical Heterogeneous Reservoirs under Constant Pressure. Mathematical Problems in Engineering, 2016, 1–9. doi: https://doi.org/10.1155/2016/6273492
  19. Fraces, C. G., Tchelepi, H. (2021). Physics Informed Deep Learning for Flow and Transport in Porous Media. Paper presented at the SPE Reservoir Simulation Conference, On-Demand, October 2021. doi: https://doi.org/10.2118/203934-ms
  20. Roy, S., Sinha, S., Hansen, A. (2020). Flow-Area Relations in Immiscible Two-Phase Flow in Porous Media. Frontiers in Physics, 8. doi: https://doi.org/10.3389/fphy.2020.00004
  21. Roy, S., Pedersen, H., Sinha, S., Hansen, A. (2022). The Co-Moving Velocity in Immiscible Two-Phase Flow in Porous Media. Transport in Porous Media. doi: https://doi.org/10.1007/s11242-022-01783-7
  22. Rakhymova, A. T., Gabbassov, M. B., Ahmedov, A. A. (2021). Analytical Solution of the Cauchy Problem for a Nonstationary Three-dimensional Model of the Filtration Theory. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 87 (1), 118–133. doi: https://doi.org/10.37934/arfmts.87.1.118133
  23. Riaz, A., Tchelepi, H. A. (2006). Numerical simulation of immiscible two-phase flow in porous media. Physics of Fluids, 18 (1), 014104. doi: https://doi.org/10.1063/1.2166388
  24. Artus, V., Furtado, F., Noetinger, B., Pereira, F. (2004). Stochastic analysis of two-phase immiscible flow in stratified porous media. Computational & Applied Mathematics, 23 (2-3). doi: https://doi.org/10.1590/s0101-82052004000200004
  25. Daripa, P., Glimm, J., Lindquist, B., McBryan, O. (1988). Polymer Floods: A Case Study of Nonlinear Wave Analysis and of Instability Control in Tertiary Oil Recovery. SIAM Journal on Applied Mathematics, 48 (2), 353–373. doi: https://doi.org/10.1137/0148018
  26. Bressan, A., Guerra, G., Shen, W. (2019). Vanishing viscosity solutions for conservation laws with regulated flux. Journal of Differential Equations, 266 (1), 312–351. doi: https://doi.org/10.1016/j.jde.2018.07.044
  27. Morad, A. M. A. (2018). A Two-Phase Pressure Drop Model for Homogenous Separated Flow for Circular Tube Condenser, Examined with Four Modern Refrigerants. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 52 (2), 274–287. Available at: https://www.akademiabaru.com/doc/ARFMTSV52_N2_P274_287.pdf
  28. Morad, A. M. A., Qasim, R. M., Ali, A. A. (2020). Study of the behaviours of single-phase turbulent flow at low to moderate Reynolds numbers through a vertical pipe. Part i: 2d counters analysis. EUREKA: Physics and Engineering, 6, 108–122. doi: https://doi.org/10.21303/2461-4262.2020.001538

##submission.downloads##

Опубліковано

2022-06-30

Як цитувати

Aldanov, Y., Toleuov, T., & Tasbolatuly, N. (2022). Побудова наближених рішень задачі рімана для двофазної течії незмішуваних рідин шляхом модифікації методу зникаючої в’язкості . Eastern-European Journal of Enterprise Technologies, 3(4 (117), 40–48. https://doi.org/10.15587/1729-4061.2022.258098

Номер

Розділ

Математика та кібернетика - прикладні аспекти