Відновлення та трансформація високотехнологічного машинобудування шляхом впровадження принципів CALS-концепції в контексті розвитку INDUSTRY 4.0

Автор(и)

  • Дмитро Олегович Волонцевич Національний технічний університет «Харківський політехнічний інститут», Україна https://orcid.org/0000-0002-0670-2762
  • Олександр Євгенович Скворчевський Національний технічний університет «Харківський політехнічний інститут», Україна https://orcid.org/0000-0002-4572-7305

DOI:

https://doi.org/10.15587/1729-4061.2022.260045

Ключові слова:

машинобудування, Continuous Acquisition and Life-Cycle Support, Індустрія 4.0, Shared Data Environment, оптимізаційна модель

Анотація

Об’єктом дослідження були процеси відновлення та трансформації високотехнологічного машинобудування із використанням принципів Індустрії 4.0 та CALS-концепції. Вирішена проблема виявлення ідей, концепцій, інструментів та розробки принципів їх застосування для відновлення та трансформації високотехнологічного машинобудування. Показано, що відновлення високотехнологічного машинобудування, в країнах, які постраждали внаслідок бойових дій, доцільно проводити із використанням CALS-концепції. Виявлені найбільш першочергових для впровадження CALS-технології та системи. Показна можливість стрибка від рівня Індустрії 2.0 до рівня Індустрії 4.0. для країн, в яких машинобудування сильно постраждало внаслідок бойових дій. Розроблено принципи відновлення та трансформація високотехнологічного машинобудування шляхом впровадження принципів CALS-концепції в контексті розвитку Індустрії 4.0. Запропонована інфраструктура учасників життєвого циклу машинобудівної продукції. Розроблена модель оптимізації виробничої програми обороно-промислового комплексу. В моделі враховані нелінійності, пов’язані із оптимізацією виробничої програми, а також стохастичний характер змін параметрів моделі. Запропонований адаптивний підхід, що дозволяє проводити оптимізацію виробничої програми за моделлю навіть спеціалістам без спеціальної математичної підготовки. Визначені пріоритети післявоєнної відбудови високотехнологічного машинобудування. Дослідження дасть можливість в якнайшвидші терміни трансформувати та відновити зруйновану внаслідок військових дій машинобудівну галузь. Умовою практичного використання даного дослідження є припинення бойових дій

Біографії авторів

Дмитро Олегович Волонцевич, Національний технічний університет «Харківський політехнічний інститут»

Доктор технічних наук, професор, завідувач кафедри

Кафедра інформаційних технологій і систем колісних та гусеничних машин ім. О.О. Морозова

Олександр Євгенович Скворчевський, Національний технічний університет «Харківський політехнічний інститут»

Кандидат технічних наук, доцент

Кафедра інформаційних технологій і систем колісних та гусеничних машин ім. О. О. Морозова

Посилання

  1. Schwab, K. (2016). The fourth industrial revolution. World Economic Forum, 172. Available at: https://law.unimelb.edu.au/__data/assets/pdf_file/0005/3385454/Schwab-The_Fourth_Industrial_Revolution_Klaus_S.pdf
  2. Fourth Industrial Revolution Beacons of Technology and Innovation in Manufacturing. In collaboration with McKinsey & Company (2019). World Economic Forum, 40. Available at: https://www3.weforum.org/docs/WEF_4IR_Beacons_of_Technology_and_Innovation_in_Manufacturing_report_2019.pdf
  3. Ghobakhloo, M. (2020). Industry 4.0, digitization, and opportunities for sustainability. Journal of Cleaner Production, 252, 119869. doi: https://doi.org/10.1016/j.jclepro.2019.119869
  4. Jamwal, A., Agrawal, R., Sharma, M., Kumar, V., Kumar, S. (2021). Developing A sustainability framework for Industry 4.0. Procedia CIRP, 98, 430–435. doi: https://doi.org/10.1016/j.procir.2021.01.129
  5. Yu, Z., Khan, S. A. R., Umar, M. (2021). Circular economy practices and industry 4.0 technologies: A strategic move of automobile industry. Business Strategy and the Environment, 31 (3), 796–809. doi: https://doi.org/10.1002/bse.2918
  6. Marcos De Oliveira, M., Geraldi Andreatta, L., Stjepandić, J., Canciglieri Junior, O. (2021). Product Lifecycle Management and Sustainable Development in the Context of Industry 4.0: A Systematic Literature Review. Transdisciplinary Engineering for Resilience: Responding to System Disruptions. doi: https://doi.org/10.3233/atde210100
  7. Duda, J., Oleszek, S., Santarek, K. (2022). Product Lifecycle Management (PLM) in the Context of Industry 4.0. Advances in Manufacturing III, 171–185. doi: https://doi.org/10.1007/978-3-030-99310-8_14
  8. Ryvak, N., Kernytska, A. (2020). Industry 4.0 initiatives in EU countries: experience for Ukraine. Socio-Economic Problems of the Modern Period of Ukraine, 4 (144), 65–70. doi: https://doi.org/10.36818/2071-4653-2020-4-9
  9. Corradini, C., Santini, E., Vecciolini, C. (2021). The geography of Industry 4.0 technologies across European regions. Regional Studies, 55 (10-11), 1667–1680. doi: https://doi.org/10.1080/00343404.2021.1884216
  10. Schluse, M., Priggemeyer, M., Atorf, L., Rossmann, J. (2018). Experimentable Digital Twins—Streamlining Simulation-Based Systems Engineering for Industry 4.0. IEEE Transactions on Industrial Informatics, 14 (4), 1722–1731. doi: https://doi.org/10.1109/tii.2018.2804917
  11. European Commission, Directorate-General for Research and Innovation, Horizon Europe, the EU research and innovation programme (2021-27). doi: https://doi.org/10.2777/601756
  12. Podolska, Ye. A., Podolska, T. V. (2009). Sotsiolohiya: 100 pytan – 100 vidpovidei. Kyiv: INKOS, 352. Available at: http://politics.ellib.org.ua/pages-cat-176.html
  13. NATO CALS handbook (2000). Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.194.9777&rep=rep1&type=pdf
  14. Tan, K. L., Goh, W. B. (2019). Designing a Multi-disciplinary Group Project for Computer Science and Engineering Students. 2019 IEEE Global Engineering Education Conference (EDUCON). doi: https://doi.org/10.1109/educon.2019.8725147
  15. Hennessy, C. H., Walker, A. (2010). Promoting multi-disciplinary and inter-disciplinary ageing research in the United Kingdom. Ageing and Society, 31 (1), 52–69. doi: https://doi.org/10.1017/s0144686x1000067x
  16. Moore, D. M., Antill, P. D. (2001). Integrated Project Teams: the way forward for UK defence procurement. European Journal of Purchasing & Supply Management, 7 (3), 179–185. doi: https://doi.org/10.1016/s0969-7012(00)00029-0
  17. Department of Defense Dictionary of Military and Associated Terms. Available at: https://irp.fas.org/doddir/dod/jp1_02.pdf
  18. Werbrouck, J., Pauwels, P., Beetz, J., van Berlo, L. (2019). Towards a decentralised common data environment using linked building data and the solid ecosystem. Conference: 36th CIB W78 2019 Conference. Available at: https://www.researchgate.net/publication/335947234_Towards_a_Decentralised_Common_Data_Environment_using_Linked_Building_Data_and_the_Solid_Ecosystem
  19. Parn, E. A., Edwards, D. (2019). Cyber threats confronting the digital built environment. Engineering, Construction and Architectural Management, 26 (2), 245–266. doi: https://doi.org/10.1108/ecam-03-2018-0101
  20. Patacas, J., Dawood, N., Kassem, M. (2020). BIM for facilities management: A framework and a common data environment using open standards. Automation in Construction, 120, 103366. doi: https://doi.org/10.1016/j.autcon.2020.103366
  21. Skvorchevsky, A. E. (2020). The prospects of the NATO CALS data model usage in innovative mechanical engineering of the Baltic-Black Sea region. Transport development, 2 (7), 73–85. doi: https://doi.org/10.33082/td.2020.2-7.07
  22. Skvorchevskyi, O. Ye. (2021). Orhanizatsiya modeli danykh NATO CALS. Information technologies: science, engineering, technology, education, health: tezy dop. 29-yi mizhnar. nauk.-prakt. konf. MicroCAD–2021. Ch. 1. Kharkiv: Planeta-Print, 118. Available at: http://repository.kpi.kharkov.ua/handle/KhPI-Press/53260
  23. Skvorchevskyi, O. Ye. (2021). NATO CALS Data Model v menedzhmenti danykh naukomistkoho mashynobudivnoho vyrobu. Computer Technology and Mechatronics: zb. nauk. pr. za materialamy 3-yi mizhnar. nauk.-metod. konf. Kharkiv: KhNADU, 194–196. Available at: http://repository.kpi.kharkov.ua/handle/KhPI-Press/53261
  24. Skvorchevsky, A. (2021). Study of the principles of building databases of high-tech machine-building products based on the basic NATO CALS database model. Information technology and computer engineering, 52 (3), 36–43. doi: https://doi.org/10.31649/1999-9941-2021-52-3-36-43
  25. Raptis, T. P., Passarella, A., Conti, M. (2019). Data Management in Industry 4.0: State of the Art and Open Challenges. IEEE Access, 7, 97052–97093. doi: https://doi.org/10.1109/access.2019.2929296
  26. Diène, B., Rodrigues, J. J. P. C., Diallo, O., Ndoye, E. H. M., Korotaev, V. V. (2020). Data management techniques for Internet of Things. Mechanical Systems and Signal Processing, 138, 106564. doi: https://doi.org/10.1016/j.ymssp.2019.106564
  27. Omri, N., Al Masry, Z., Mairot, N., Giampiccolo, S., Zerhouni, N. (2020). Industrial data management strategy towards an SME-oriented PHM. Journal of Manufacturing Systems, 56, 23–36. doi: https://doi.org/10.1016/j.jmsy.2020.04.002
  28. Melesse, T. Y., Pasquale, V. D., Riemma, S. (2020). Digital Twin Models in Industrial Operations: A Systematic Literature Review. Procedia Manufacturing, 42, 267–272. doi: https://doi.org/10.1016/j.promfg.2020.02.084
  29. Suhail, S., Hussain, R., Jurdak, R., Hong, C. S. (2021). Trustworthy Digital Twins in the Industrial Internet of Things with Blockchain. IEEE Internet Computing, 1–1. doi: https://doi.org/10.1109/mic.2021.3059320
  30. Huang, Z., Shen, Y., Li, J., Fey, M., Brecher, C. (2021). A Survey on AI-Driven Digital Twins in Industry 4.0: Smart Manufacturing and Advanced Robotics. Sensors, 21 (19), 6340. doi: https://doi.org/10.3390/s21196340
  31. Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., Sui, F. (2017). Digital twin-driven product design, manufacturing and service with big data. The International Journal of Advanced Manufacturing Technology, 94 (9-12), 3563–3576. doi: https://doi.org/10.1007/s00170-017-0233-1
  32. Wang, Y., Wang, S., Yang, B., Zhu, L., Liu, F. (2020). Big data driven Hierarchical Digital Twin Predictive Remanufacturing paradigm: Architecture, control mechanism, application scenario and benefits. Journal of Cleaner Production, 248, 119299. doi: https://doi.org/10.1016/j.jclepro.2019.119299
  33. Nikonov, O., Kyrychenko, I., Shuliakov, V., Valentyna, F. (2020). Parametric synthesis of a dynamic object control system with nonlinear characteristics. Computer Modeling and Intelligent Systems, 2608, 91–101. doi: https://doi.org/10.32782/cmis/2608-8
  34. Nikonov, O., Kyrychenko, I., Shuliakov, V. (2020). Simulation modeling of external perturbations affecting wheeled vehicles of special purpose. Computer Modeling and Intelligent Systems, 2608, 547–556. doi: https://doi.org/10.32782/cmis/2608-42
  35. Liubarskyi, B., Iakunin, D., Nikonov, O., Liubarskyi, D., Yeritsyan, B. (2022). Optimizing geometric parameters for the rotor of a traction synchronous reluctance motor assisted by partitioned permanent magnets. Eastern-European Journal of Enterprise Technologies, 2 (8 (116)), 38–44. doi: https://doi.org/10.15587/1729-4061.2022.254373

##submission.downloads##

Опубліковано

2022-06-30

Як цитувати

Волонцевич, Д. О., & Скворчевський, О. Є. (2022). Відновлення та трансформація високотехнологічного машинобудування шляхом впровадження принципів CALS-концепції в контексті розвитку INDUSTRY 4.0. Eastern-European Journal of Enterprise Technologies, 3(1 (117), 15–24. https://doi.org/10.15587/1729-4061.2022.260045

Номер

Розділ

Виробничо-технологічні системи