Розробка технології вилучення каротиноїдів із м’якуша гарбуза (Cucurbita spp.) Із використанням Zn-Al подвійно-шарових гідроксидів

Автор(и)

  • Вадим Леонідович Коваленко Український державний хіміко-технологічний університет, Україна https://orcid.org/0000-0002-8012-6732
  • Валерій Анатолійович Коток Український державний хіміко-технологічний університет, Україна https://orcid.org/0000-0002-8012-6732
  • Антон Юрійович Допіра Національний еколого-натуралістичний центр учнівської молоді, Україна https://orcid.org/0000-0001-9391-3543
  • Gregorio Guadalupe Carbajal Arizaga University of Guadalajara, Мексика https://orcid.org/0000-0003-3120-0243
  • Володимир Валентинович Вербицький Національний педагогічний університет ім. Драгоманова; Національний еколого-натуралістичний центр учнівської молоді, Україна https://orcid.org/0000-0001-7045-8293
  • Володимир Юрійович Медяник Національний технічний університет «Дніпровська політехніка», Україна https://orcid.org/0000-0001-5403-5338
  • Оксана Валеріївна Берзеніна Український державний хіміко-технологічний університет, Україна https://orcid.org/0000-0002-1786-859X
  • Інна Миколаївна Анатайчук Український державний хіміко-технологічний університет, Україна https://orcid.org/0000-0001-5264-1262

DOI:

https://doi.org/10.15587/1729-4061.2022.263169

Ключові слова:

Zn-Al подвійно-шаровий гідроксид, композит «каротиноїди-подвійно-шаровий гідроксид», технологія вилучення каротиноїдів, м’якуш гарбуза, внутрішнє саморозмелювання

Анотація

Каротиноїди є біологічно активними матеріалами, що мають сильні антиоксидантні властивостями, частина є провітамінами А. Перспективним джерелом каротиноїдів є м’якуш гарбуза. Об’єктом дослідження є технологія вилучення каротиноїдів із використанням ПШГ.

Розроблена технологічна схема отримання каротиноїдів гарбуза методом осадження композита «каротиноїди-ПШГ»:

а) отримання фрешу гарбуза із введенням солей Zn та Al;

б) осадження композиту «каротиноїди-ПШГ» шляхом додавання лугу до рН=9 при t=60  С та перемішуванні;

в) фільтрування осаду композиту під вакуумом, висушування, промивання, повторне фільтрування та висушування;

г) розділення композиту на складові.

Запропоновано простий механічний метод (розмелювання та просіювання) для розділення композиту на каротиноїд-збагаченого і ПШГ-збагаченого матеріалів. Метод заснований на внутрішньому самоперетиранні композиту при розмелюванні рахунок твердих часток ПШГ в якості тіл розмелювання. При видаленні каротиноїдів у вигляді композита виявлено швидку седиментацію осаду та легкість фільтрування під вакуумом. Методом рентгенофазового аналізу показано, що композит та продукти його розділення містять рентгеноаморфний Zn-Al ПШГ, оксидну фазу і аморфну фазу каротиноїдів. Методом екстракції дихлоретаном доведено ефективність процесу розділення композиту. Показано, що для оптимальної кількості Zn-Al ПШГ вміст каротиноїдів в каротиноїд-збагаченому матеріалі склала 24,4 %, а в ПШГ-збагаченому – 4,4 %. Для цих умов виявлено, що загальний вихід каротиноїдів склав 184,3 мг/100 г м’якуша гарбуза, із них 155,4 мг/100 г в каротиноїд-збагаченому матеріалі і 28,9 мг/100 г в ПШГ-збагаченому матеріалі. Висловлена гіпотеза щодо хімічної природи взаємодії каротиноїдів та ПШГ в композиті за рахунок π-d взаємодії.

Отриманий каротиноїд-вмісні матеріали, можут бути використані в якості харчових добавок або перероблені з отриманням очищених каротиноїдів

Біографії авторів

Вадим Леонідович Коваленко, Український державний хіміко-технологічний університет

Кандидат технічних наук, доцент

Кафедра аналітичної хімії та хімічної технології харчових добавок і косметичних засобів

Валерій Анатолійович Коток, Український державний хіміко-технологічний університет

Кандидат технічних наук, доцент

Кафедра процесів і апаратів, та загальної хімічної технології

Gregorio Guadalupe Carbajal Arizaga, University of Guadalajara

PhD, Associate Professor

Department of Chemistry

Володимир Валентинович Вербицький, Національний педагогічний університет ім. Драгоманова; Національний еколого-натуралістичний центр учнівської молоді

Доктор педагогічних наук, професор, директор

Кафедра медичних, біологічних та валеологічних основ захисту життя та здоров’я

Володимир Юрійович Медяник, Національний технічний університет «Дніпровська політехніка»

Кандидат технічних наук, доцент

Кафедра гірничої інженерії та освіти

Оксана Валеріївна Берзеніна, Український державний хіміко-технологічний університет

Кандидат біологічних наук, доцент

Кафедра неорганічної хімії

Інна Миколаївна Анатайчук, Український державний хіміко-технологічний університет

Старший викладач

Відділ міжнародного співробітництва

Посилання

  1. Maoka, T. (2020). Carotenoids as natural functional pigments. Journal of Natural Medicines, 74 (1), 1–16. doi: https://doi.org/10.1007/s11418-019-01364-x
  2. Rao, A. V., Agarwal, S. (1999). Role of lycopene as antioxidant carotenoid in the prevention of chronic diseases: A review. Nutrition Research, 19 (2), 305–323. doi: https://doi.org/10.1016/s0271-5317(98)00193-6
  3. Bogacz-Radomska, L., Harasym, J., Piwowar, A. (2020). Commercialization aspects of carotenoids. Carotenoids: Properties, Processing and Applications, 327–357. doi: https://doi.org/10.1016/b978-0-12-817067-0.00010-5
  4. Rizk, E. M., El-Kady, A. T., El-Bialy, A. R. (2014). Charactrization of carotenoids (lyco-red) extracted from tomato peels and its uses as natural colorants and antioxidants of ice cream. Annals of Agricultural Sciences, 59 (1), 53–61. doi: https://doi.org/10.1016/j.aoas.2014.06.008
  5. Nelyubina, E. G., Bobkova, E. Y., Ivanov, D. V., Grygoryants, I. A., Terekhova, A. A. (2020). Production of sauces based on lipidic carotenoid pumpkin extract. IOP Conference Series: Earth and Environmental Science, 422 (1), 012090. doi: https://doi.org/10.1088/1755-1315/422/1/012090
  6. Liaqat, F., Khazi, M. I., Bahadar, A., He, L., Aslam, A., Liaquat, R. et. al. (2022). Mixotrophic cultivation of microalgae for carotenoid production. Reviews in Aquaculture. doi: https://doi.org/10.1111/raq.12700
  7. Sandmann, G., Misawa, N. (2021). Carotenoid Production in Escherichia coli: Case of Acyclic Carotenoids. Carotenoids: Biosynthetic and Biofunctional Approaches, 201–208. doi: https://doi.org/10.1007/978-981-15-7360-6_17
  8. Garrido-Fernández, J., Maldonado-Barragán, A., Caballero-Guerrero, B., Hornero-Méndez, D., Ruiz-Barba, J. L. (2010). Carotenoid production in Lactobacillus plantarum. International Journal of Food Microbiology, 140 (1), 34–39. doi: https://doi.org/10.1016/j.ijfoodmicro.2010.02.015
  9. Aghel, N., Ramezani, Z., Amirfakhrian, S. (2011). Isolation and Quantification of Lycopene from Tomato Cultivated in Dezfoul, Iran. Jundishapur Journal of Natural Pharmaceutical Products, 6 (1), 9–15. Available at: https://www.researchgate.net/publication/261712650_Isolation_and_Quantification_of_Lycopene_from_Tomato_Cultivated_in_Dezfoul_Iran
  10. Kumar Kashyap, P., Singh, S., Kumar Singh, M., Gupta, A., Tandon, S., Shanker, K. et. al. (2022). An efficient process for the extraction of lutein and chemical characterization of other organic volatiles from marigold (Tagetes erecta L.) flower. Food Chemistry, 396, 133647. doi: https://doi.org/10.1016/j.foodchem.2022.133647
  11. Bureau, J. L., Bushway, R. J. (1986). HPLC Determination of Carotenoids in Fruits and Vegetables in the United States. Journal of Food Science, 51 (1), 128–130. doi: https://doi.org/10.1111/j.1365-2621.1986.tb10851.x
  12. Lim, T. K. (2012). Edible Medicinal And Non-Medicinal Plants. Volume 2, Fruits. Springer, 1100. doi: https://doi.org/10.1007/978-94-007-1764-0
  13. Eh, A. L.-S., Teoh, S.-G. (2012). Novel modified ultrasonication technique for the extraction of lycopene from tomatoes. Ultrasonics Sonochemistry, 19 (1), 151–159. doi: https://doi.org/10.1016/j.ultsonch.2011.05.019
  14. Poojary, M. M., Passamonti, P. (2015). Extraction of lycopene from tomato processing waste: Kinetics and modelling. Food Chemistry, 173, 943–950. doi: https://doi.org/10.1016/j.foodchem.2014.10.127
  15. Zuorro, A., Fidaleo, M., Lavecchia, R. (2011). Enzyme-assisted extraction of lycopene from tomato processing waste. Enzyme and Microbial Technology, 49 (6-7), 567–573. doi: https://doi.org/10.1016/j.enzmictec.2011.04.020
  16. Chada, P. S. N., Santos, P. H., Rodrigues, L. G. G., Goulart, G. A. S., Azevedo dos Santos, J. D., Maraschin, M., Lanza, M. (2022). Non-conventional techniques for the extraction of antioxidant compounds and lycopene from industrial tomato pomace (Solanum lycopersicum L.) using spouted bed drying as a pre-treatment. Food Chemistry: X, 13, 100237. doi: https://doi.org/10.1016/j.fochx.2022.100237
  17. Chemat-Djenni, Z., Ferhat, M. A., Tomao, V., Chemat, F. (2010). Carotenoid Extraction from Tomato Using a Green Solvent Resulting from Orange Processing Waste. Journal of Essential Oil Bearing Plants, 13 (2), 139–147. doi: https://doi.org/10.1080/0972060x.2010.10643803
  18. Ludwig, K., Rihko-Struckmann, L., Brinitzer, G., Unkelbach, G., Sundmacher, K. (2021). β-Carotene extraction from Dunaliella salina by supercritical CO2. Journal of Applied Phycology, 33 (3), 1435–1445. doi: https://doi.org/10.1007/s10811-021-02399-y
  19. Zuknik, M. H., Nik Norulaini, N. A., Mohd Omar, A. K. (2012). Supercritical carbon dioxide extraction of lycopene: A review. Journal of Food Engineering, 112 (4), 253–262. doi: https://doi.org/10.1016/j.jfoodeng.2012.05.012
  20. Hernández, D. E., Magallon, A. P., Arizaga, G. G. C. (2019). Green extraction of lycopene from tomato juice with layered double hydroxide nanoparticles. Micro & Nano Letters, 14 (3), 230–233. doi: https://doi.org/10.1049/mnl.2018.5437
  21. Murillo Vazquez, R. N., Nuñez, C. P., Kovalenko, V., Kotok, V., Pacheco Moisés, F. P., Macias Lamas, A. M., Carbajal Arízaga, G. G. (2023). Electron Transfer within an Antioxidant Powder Composite with Layered Double Hydroxide Nanoparticles and Tomato Extract. Biointerface Research in Applied Chemistry, 13 (3), 257. doi: https://doi.org/10.33263/BRIAC133.257
  22. Burmistr, M. V., Boiko, V. S., Lipko, E. O., Gerasimenko, K. O., Gomza, Y. P., Vesnin, R. L. et. al. (2014). Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers. Mechanics of Composite Materials, 50 (2), 213–222. doi: https://doi.org/10.1007/s11029-014-9408-0
  23. Kovalenko, V., Kotok, V. (2017). Selective anodic treatment of W(WC)-based superalloy scrap. Eastern-European Journal of Enterprise Technologies, 1 (5 (85)), 53–58. doi: https://doi.org/10.15587/1729-4061.2017.91205
  24. Rajamathi, M., Vishnu Kamath, P., Seshadri, R. (2000). Polymorphism in nickel hydroxide: role of interstratification. Journal of Materials Chemistry, 10 (2), 503–506. doi: https://doi.org/10.1039/a905651c
  25. Kovalenko, V. L., Kotok, V. A., Sykchin, A., Ananchenko, B. A., Chernyad’ev, A. V., Burkov, A. A. et. al. (2020). Al3+ Additive in the Nickel Hydroxide Obtained by High-Temperature Two-Step Synthesis: Activator or Poisoner for Chemical Power Source Application? Journal of The Electrochemical Society, 167 (10), 100530. doi: https://doi.org/10.1149/1945-7111/ab9a2a
  26. Kotok, V., Kovalenko, V. (2018). A study of the effect of tungstate ions on the electrochromic properties of Ni(OH)2 films. Eastern-European Journal of Enterprise Technologies, 5 (12 (95)), 18–24. doi: https://doi.org/10.15587/1729-4061.2018.145223
  27. Kotok, V., Kovalenko, V. (2018). A study of multilayered electrochromic platings based on nickel and cobalt hydroxides. Eastern-European Journal of Enterprise Technologies, 1 (12 (91)), 29–35. doi: https://doi.org/10.15587/1729-4061.2018.121679
  28. Kovalenko, V., Kotok, V. (2019). Influence of the carbonate ion on characteristics of electrochemically synthesized layered (α+β) nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 1 (6 (97)), 40–46. doi: https://doi.org/10.15587/1729-4061.2019.155738
  29. Kovalenko, V., Kotok, V. (2019). Anionic carbonate activation of layered (α+β) nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 3 (6 (99)), 44–52. doi: https://doi.org/10.15587/1729-4061.2019.169461
  30. Kotok, V., Kovalenko, V., Malyshev, V. (2017). Comparison of oxygen evolution parameters on different types of nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 12–19. doi: https://doi.org/10.15587/1729-4061.2017.109770
  31. Nalawade, P., Aware, B., Kadam, V. J., Hirlekar, R. S. (2009). Layered double hydroxides: A review. Journal of Scientific & Industrial Research, 68, 267–272. Available at: https://www.hazemsakeek.net/wp-content/uploads/2021/06/LDH.pdf
  32. Zhang, Y., Xu, H., Lu, S. (2021). Preparation and application of layered double hydroxide nanosheets. RSC Advances, 11 (39), 24254–24281. doi: https://doi.org/10.1039/d1ra03289e
  33. Kovalenko, V., Borysenko, A., Kotok, V., Nafeev, R., Verbitskiy, V., Melnyk, O. (2022). Determination of the dependence of the structure of Zn-Al layered double hydroxides, as a matrix for functional anions intercalation, on synthesis conditions. Eastern-European Journal of Enterprise Technologies, 1 (12 (115)), 12–20. doi: https://doi.org/10.15587/1729-4061.2022.252738
  34. Kovalenko, V., Borysenko, A., Kotok, V., Nafeev, R., Verbitskiy, V., Melnyk, O. (2022). Determination of technological parameters of Zn-Al layered double hydroxides, as a matrix for functional anions intercalation, under different synthesis conditions. Eastern-European Journal of Enterprise Technologies, 2 (6 (116)), 25–32. doi: https://doi.org/10.15587/1729-4061.2022.254496
  35. Kotok, V., Kovalenko, V., Vlasov, S. (2018). Investigation of Ni­Al hydroxide with silver addition as an active substance of alkaline batteries. Eastern-European Journal of Enterprise Technologies, 3 (6 (93)), 6–11. doi: https://doi.org/10.15587/1729-4061.2018.133465
  36. Kovalenko, V., Kotok, V. (2019). Investigation of characteristics of double Ni–Co and ternary Ni–Co–Al layered hydroxides for supercapacitor application. Eastern-European Journal of Enterprise Technologies, 2 (6 (98)), 58–66. doi: https://doi.org/10.15587/1729-4061.2019.164792
  37. Solovov, V. A., Nikolenko, N. V., Kovalenko, V. L., Kotok, V. A., Burkov, A. А., Kondrat’ev, D. A. et. al. (2018). Synthesis of Ni(II)-Ti(IV) Layered Double Hydroxides Using Coprecipitation At High Supersaturation Method. ARPN Journal of Engineering and Applied Sciences, 24 (13), 9652–9656. Available at: http://www.arpnjournals.org/jeas/research_papers/rp_2018/jeas_1218_7500.pdf
  38. Kovalenko, V., Kotok, V., Yeroshkina, A., Zaychuk, A. (2017). Synthesis and characterisation of dye­intercalated nickel­aluminium layered­double hydroxide as a cosmetic pigment. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 27–33. doi: https://doi.org/10.15587/1729-4061.2017.109814
  39. Kovalenko, V., Kotok, V. (2021). The determination of synthesis conditions and color properties of pigments based on layered double hydroxides with Co as a guest cation. Eastern-European Journal of Enterprise Technologies, 6 (6 (114)), 32–38. doi: https://doi.org/10.15587/1729-4061.2021.247160
  40. Kovalenko, V., Kotok, V. (2020). Determination of the applicability of Zn­Al layered double hydroxide, intercalated by food dye Orange Yellow S, as a cosmetic pigment. Eastern-European Journal of Enterprise Technologies, 5 (12 (107)), 81–89. doi: https://doi.org/10.15587/1729-4061.2020.214847
  41. Kovalenko, V., Kotok, V. (2020). Tartrazine-intercalated Zn–Al layered double hydroxide as a pigment for gel nail polish: synthesis and characterisation. Eastern-European Journal of Enterprise Technologies, 3 (12 (105)), 29–37. doi: https://doi.org/10.15587/1729-4061.2020.205607
  42. Kovalenko, V., Kotok, V. (2020). Bifuctional indigocarmin­intercalated Ni­Al layered double hydroxide: investigation of characteristics for pigment and supercapacitor application. Eastern-European Journal of Enterprise Technologies, 2 (12 (104)), 30–39. doi: https://doi.org/10.15587/1729-4061.2020.201282
  43. Mandal, S., Tichit, D., Lerner, D. A., Marcotte, N. (2009). Azoic Dye Hosted in Layered Double Hydroxide: Physicochemical Characterization of the Intercalated Materials. Langmuir, 25 (18), 10980–10986. doi: https://doi.org/10.1021/la901201s
  44. Mandal, S., Lerner, D. A., Marcotte, N., Tichit, D. (2009). Structural characterization of azoic dye hosted layered double hydroxides. Zeitschrift Für Kristallographie, 224 (5-6), 282–286. doi: https://doi.org/10.1524/zkri.2009.1150
  45. Wang, Q., Feng, Y., Feng, J., Li, D. (2011). Enhanced thermal- and photo-stability of acid yellow 17 by incorporation into layered double hydroxides. Journal of Solid State Chemistry, 184 (6), 1551–1555. doi: https://doi.org/10.1016/j.jssc.2011.04.020
  46. Liu, J. Q., Zhang, X. C., Hou, W. G., Dai, Y. Y., Xiao, H., Yan, S. S. (2009). Synthesis and Characterization of Methyl-Red/Layered Double Hydroxide (LDH) Nanocomposite. Advanced Materials Research, 79-82, 493–496. doi: https://doi.org/10.4028/www.scientific.net/amr.79-82.493
  47. Tian, Y., Wang, G., Li, F., Evans, D. G. (2007). Synthesis and thermo-optical stability of o-methyl red-intercalated Ni–Fe layered double hydroxide material. Materials Letters, 61 (8-9), 1662–1666. doi: https://doi.org/10.1016/j.matlet.2006.07.094
  48. Hwang, S.-H., Jung, S.-C., Yoon, S.-M., Kim, D.-K. (2008). Preparation and characterization of dye-intercalated Zn–Al-layered double hydroxide and its surface modification by silica coating. Journal of Physics and Chemistry of Solids, 69 (5-6), 1061–1065. doi: https://doi.org/10.1016/j.jpcs.2007.11.002
  49. Tang, P., Deng, F., Feng, Y., Li, D. (2012). Mordant Yellow 3 Anions Intercalated Layered Double Hydroxides: Preparation, Thermo- and Photostability. Industrial & Engineering Chemistry Research, 51 (32), 10542–10545. doi: https://doi.org/10.1021/ie300645b
  50. Tang, P., Feng, Y., Li, D. (2011). Fabrication and properties of Acid Yellow 49 dye-intercalated layered double hydroxides film on an alumina-coated aluminum substrate. Dyes and Pigments, 91 (2), 120–125. doi: https://doi.org/10.1016/j.dyepig.2011.03.012
  51. Tang, P., Feng, Y., Li, D. (2011). Improved thermal and photostability of an anthraquinone dye by intercalation in a zinc-aluminum layered double hydroxides host. Dyes and Pigments, 90 (3), 253–258. doi: https://doi.org/10.1016/j.dyepig.2011.01.007
  52. Khan, A. I., Ragavan, A., Fong, B., Markland, C., O’Brien, M., Dunbar, T. G. et. al. (2009). Recent Developments in the Use of Layered Double Hydroxides as Host Materials for the Storage and Triggered Release of Functional Anions. Industrial & Engineering Chemistry Research, 48 (23), 10196–10205. doi: https://doi.org/10.1021/ie9012612
  53. Silverio, F., dos Reis, M. J., Tronto, J., Valim, J. B. (2007). Removal of aliphatic amino acids by hybrid organic-inorganic layered compounds. Applied Surface Science, 253 (13), 5756–5761. doi: https://doi.org/10.1016/j.apsusc.2006.12.040
  54. Arizaga, G. G. C., da Costa Gardolinski, J. E. F., Schreiner, W. H., Wypych, F. (2009). Intercalation of an oxalatooxoniobate complex into layered double hydroxide and layered zinc hydroxide nitrate. Journal of Colloid and Interface Science, 330 (2), 352–358. doi: https://doi.org/10.1016/j.jcis.2008.10.025
  55. Cursino, A. C. T., Rives, V., Arizaga, G. G. C., Trujillano, R., Wypych, F. (2015). Rare earth and zinc layered hydroxide salts intercalated with the 2-aminobenzoate anion as organic luminescent sensitizer. Materials Research Bulletin, 70, 336–342. doi: https://doi.org/10.1016/j.materresbull.2015.04.055
  56. Kovalenko, V., Kotok, V. (2019). “Smart” anti-corrosion pigment based on layered double hydroxide: construction and characterization. Eastern-European Journal of Enterprise Technologies, 4 (12 (100)), P. 23–30. doi: https://doi.org/10.15587/1729-4061.2019.176690
  57. Pillai, S. K., Kleyi, P., de Beer, M., Mudaly, P. (2020). Layered double hydroxides: An advanced encapsulation and delivery system for cosmetic ingredients-an overview. Applied Clay Science, 199, 105868. doi: https://doi.org/10.1016/j.clay.2020.105868
  58. Viseras, C., Sánchez-Espejo, R., Palumbo, R., Liccardi, N., García-Villén, F., Borrego-Sánchez, A. et. al. (2021). Clays in cosmetics and personal-care products. Clays and Clay Minerals, 69 (5), 561–575. doi: https://doi.org/10.1007/s42860-021-00154-5
  59. Choi, S.-J., Kim, Y.-R. (2013). Bioinspired Layered Nanoclays for Nutraceutical Delivery System. Advances in Applied Nanotechnology for Agriculture, 207–220. doi: https://doi.org/10.1021/bk-2013-1143.ch012
  60. Andrade, K. N., Pérez, A. M. P., Arízaga, G. G. C. (2019). Passive and active targeting strategies in hybrid layered double hydroxides nanoparticles for tumor bioimaging and therapy. Applied Clay Science, 181, 105214. doi: https://doi.org/10.1016/j.clay.2019.105214
  61. Arízaga, G. G. C., Jiménez, C. S., Saavedra, K. J. P., Lamas, A. M. M., Pérez, A. M. P. (2016). Folate-intercalated layered double hydroxide as a vehicle for cyclophosphamide, a non-ionic anti-cancer drug. Micro & Nano Letters, 11 (7), 360–362. doi: https://doi.org/10.1049/mnl.2016.0106
  62. Abdolmohammad-Zadeh, H., Hammami Oskooyi, S. M. (2014). Solid-phase extraction of l-tryptophan from food samples utilizing a layered double hydroxide nano-sorbent prior to its determination by spectrofluorometry. Journal of the Iranian Chemical Society, 12 (6), 1115–1122. doi: https://doi.org/10.1007/s13738-014-0572-x
  63. Ghotbi, M. Y., Hussein, M. Z. bin, Yahaya, A. H., Rahman, M. Z. A. (2009). LDH-intercalated d-gluconate: Generation of a new food additive-inorganic nanohybrid compound. Journal of Physics and Chemistry of Solids, 70 (6), 948–954. doi: https://doi.org/10.1016/j.jpcs.2009.05.007
  64. Supun Samindra, K. M., Kottegoda, N. (2014). Encapsulation of curcumin into layered double hydroxides. Nanotechnology Reviews, 3 (6). doi: https://doi.org/10.1515/ntrev-2014-0018
  65. Hong, M.-M., Oh, J.-M., Choy, J.-H. (2008). Encapsulation of Flavor Molecules, 4-Hydroxy-3-Methoxy Benzoic Acid, into Layered Inorganic Nanoparticles for Controlled Release of Flavor. Journal of Nanoscience and Nanotechnology, 8 (10), 5018–5021. doi: https://doi.org/10.1166/jnn.2008.1385
  66. Kovalenko, V., Kotok, V., Borysenko, A., Dopira, A., Rezvantseva, A., Nafeev, R. et. al. (2022). Investigation of the characteristics of Zn-Al layered double hydroxides, intercalated with natural dyes from spices, as a cosmetic pigments. Eastern-European Journal of Enterprise Technologies, 3 (12 (117)), 52–59. doi: https://doi.org/10.15587/1729-4061.2022.260170
  67. Kulaitiene, J., Jariene, E., Danilcenko, H. et. al. (2014). Chemical composition of pumpkin (Cucurbita maxima D.) flesh flours used for food. Journal of Food, Agriculture & Environment, 12 (3-4), 61–64. Available at: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.655.2627&rep=rep1&type=pdf
  68. Juknevičienė, E., Danilčenko, H., Jarienė, E., Živatkauskienė, V., Zeise, J., Fritz, J. (2021). The effect of biodynamic preparations on growth and fruit quality of giant pumpkin (Cucurbita maxima D.). Chemical and Biological Technologies in Agriculture, 8 (1). doi: https://doi.org/10.1186/s40538-021-00258-z
  69. Biesiada, A., Nawirska, A., Kucharska, A., Sokół-Łętowska, A. (2011). Chemical composition of pumpkin fruit depending on cultivar and storage. Ecological Chemistry and Engineering, 18 (1), 9–18. Available at: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BPG8-0050-0001
  70. Azevedo-Meleiro, C. H., Rodriguez-Amaya, D. B. (2007). Qualitative and Quantitative Differences in Carotenoid Composition among Cucurbita moschata, Cucurbita maxima, and Cucurbita pepo. Journal of Agricultural and Food Chemistry, 55 (10), 4027–4033. doi: https://doi.org/10.1021/jf063413d
  71. Pumpkin, raw. FoodData Central. U. S. Department of agriculture. Available at: https://fdc.nal.usda.gov/fdc-app.html#/food-details/168448/nutrients
  72. Squash, winter, butternut, raw. FoodData Central. U. S. Department of agriculture. Available at: https://fdc.nal.usda.gov/fdc-app.html#/food-details/169295/nutrients
  73. Delhoyo, C. (2007). Layered double hydroxides and human health: An overview. Applied Clay Science, 36 (1-3), 103–121. doi: https://doi.org/10.1016/j.clay.2006.06.010
  74. Ngew, E., Phue, W. H., Liu, Z., George, S. (2022). Composite of Layered Double Hydroxide with Casein and Carboxymethylcellulose as a White Pigment for Food Application. Foods, 11 (8), 1120. doi: https://doi.org/10.3390/foods11081120

##submission.downloads##

Опубліковано

2022-08-31

Як цитувати

Коваленко, В. Л., Коток, В. А., Допіра, А. Ю., Carbajal Arizaga, G. G., Вербицький, В. В., Медяник, В. Ю., Берзеніна, О. В., & Анатайчук, І. М. (2022). Розробка технології вилучення каротиноїдів із м’якуша гарбуза (Cucurbita spp.) Із використанням Zn-Al подвійно-шарових гідроксидів. Eastern-European Journal of Enterprise Technologies, 4(6(118), 6–15. https://doi.org/10.15587/1729-4061.2022.263169

Номер

Розділ

Технології органічних та неорганічних речовин