Розробка технології вилучення каротиноїдів із м’якуша гарбуза (Cucurbita spp.) Із використанням Zn-Al подвійно-шарових гідроксидів
DOI:
https://doi.org/10.15587/1729-4061.2022.263169Ключові слова:
Zn-Al подвійно-шаровий гідроксид, композит «каротиноїди-подвійно-шаровий гідроксид», технологія вилучення каротиноїдів, м’якуш гарбуза, внутрішнє саморозмелюванняАнотація
Каротиноїди є біологічно активними матеріалами, що мають сильні антиоксидантні властивостями, частина є провітамінами А. Перспективним джерелом каротиноїдів є м’якуш гарбуза. Об’єктом дослідження є технологія вилучення каротиноїдів із використанням ПШГ.
Розроблена технологічна схема отримання каротиноїдів гарбуза методом осадження композита «каротиноїди-ПШГ»:
а) отримання фрешу гарбуза із введенням солей Zn та Al;
б) осадження композиту «каротиноїди-ПШГ» шляхом додавання лугу до рН=9 при t=60 С та перемішуванні;
в) фільтрування осаду композиту під вакуумом, висушування, промивання, повторне фільтрування та висушування;
г) розділення композиту на складові.
Запропоновано простий механічний метод (розмелювання та просіювання) для розділення композиту на каротиноїд-збагаченого і ПШГ-збагаченого матеріалів. Метод заснований на внутрішньому самоперетиранні композиту при розмелюванні рахунок твердих часток ПШГ в якості тіл розмелювання. При видаленні каротиноїдів у вигляді композита виявлено швидку седиментацію осаду та легкість фільтрування під вакуумом. Методом рентгенофазового аналізу показано, що композит та продукти його розділення містять рентгеноаморфний Zn-Al ПШГ, оксидну фазу і аморфну фазу каротиноїдів. Методом екстракції дихлоретаном доведено ефективність процесу розділення композиту. Показано, що для оптимальної кількості Zn-Al ПШГ вміст каротиноїдів в каротиноїд-збагаченому матеріалі склала 24,4 %, а в ПШГ-збагаченому – 4,4 %. Для цих умов виявлено, що загальний вихід каротиноїдів склав 184,3 мг/100 г м’якуша гарбуза, із них 155,4 мг/100 г в каротиноїд-збагаченому матеріалі і 28,9 мг/100 г в ПШГ-збагаченому матеріалі. Висловлена гіпотеза щодо хімічної природи взаємодії каротиноїдів та ПШГ в композиті за рахунок π-d взаємодії.
Отриманий каротиноїд-вмісні матеріали, можут бути використані в якості харчових добавок або перероблені з отриманням очищених каротиноїдів
Посилання
- Maoka, T. (2020). Carotenoids as natural functional pigments. Journal of Natural Medicines, 74 (1), 1–16. doi: https://doi.org/10.1007/s11418-019-01364-x
- Rao, A. V., Agarwal, S. (1999). Role of lycopene as antioxidant carotenoid in the prevention of chronic diseases: A review. Nutrition Research, 19 (2), 305–323. doi: https://doi.org/10.1016/s0271-5317(98)00193-6
- Bogacz-Radomska, L., Harasym, J., Piwowar, A. (2020). Commercialization aspects of carotenoids. Carotenoids: Properties, Processing and Applications, 327–357. doi: https://doi.org/10.1016/b978-0-12-817067-0.00010-5
- Rizk, E. M., El-Kady, A. T., El-Bialy, A. R. (2014). Charactrization of carotenoids (lyco-red) extracted from tomato peels and its uses as natural colorants and antioxidants of ice cream. Annals of Agricultural Sciences, 59 (1), 53–61. doi: https://doi.org/10.1016/j.aoas.2014.06.008
- Nelyubina, E. G., Bobkova, E. Y., Ivanov, D. V., Grygoryants, I. A., Terekhova, A. A. (2020). Production of sauces based on lipidic carotenoid pumpkin extract. IOP Conference Series: Earth and Environmental Science, 422 (1), 012090. doi: https://doi.org/10.1088/1755-1315/422/1/012090
- Liaqat, F., Khazi, M. I., Bahadar, A., He, L., Aslam, A., Liaquat, R. et. al. (2022). Mixotrophic cultivation of microalgae for carotenoid production. Reviews in Aquaculture. doi: https://doi.org/10.1111/raq.12700
- Sandmann, G., Misawa, N. (2021). Carotenoid Production in Escherichia coli: Case of Acyclic Carotenoids. Carotenoids: Biosynthetic and Biofunctional Approaches, 201–208. doi: https://doi.org/10.1007/978-981-15-7360-6_17
- Garrido-Fernández, J., Maldonado-Barragán, A., Caballero-Guerrero, B., Hornero-Méndez, D., Ruiz-Barba, J. L. (2010). Carotenoid production in Lactobacillus plantarum. International Journal of Food Microbiology, 140 (1), 34–39. doi: https://doi.org/10.1016/j.ijfoodmicro.2010.02.015
- Aghel, N., Ramezani, Z., Amirfakhrian, S. (2011). Isolation and Quantification of Lycopene from Tomato Cultivated in Dezfoul, Iran. Jundishapur Journal of Natural Pharmaceutical Products, 6 (1), 9–15. Available at: https://www.researchgate.net/publication/261712650_Isolation_and_Quantification_of_Lycopene_from_Tomato_Cultivated_in_Dezfoul_Iran
- Kumar Kashyap, P., Singh, S., Kumar Singh, M., Gupta, A., Tandon, S., Shanker, K. et. al. (2022). An efficient process for the extraction of lutein and chemical characterization of other organic volatiles from marigold (Tagetes erecta L.) flower. Food Chemistry, 396, 133647. doi: https://doi.org/10.1016/j.foodchem.2022.133647
- Bureau, J. L., Bushway, R. J. (1986). HPLC Determination of Carotenoids in Fruits and Vegetables in the United States. Journal of Food Science, 51 (1), 128–130. doi: https://doi.org/10.1111/j.1365-2621.1986.tb10851.x
- Lim, T. K. (2012). Edible Medicinal And Non-Medicinal Plants. Volume 2, Fruits. Springer, 1100. doi: https://doi.org/10.1007/978-94-007-1764-0
- Eh, A. L.-S., Teoh, S.-G. (2012). Novel modified ultrasonication technique for the extraction of lycopene from tomatoes. Ultrasonics Sonochemistry, 19 (1), 151–159. doi: https://doi.org/10.1016/j.ultsonch.2011.05.019
- Poojary, M. M., Passamonti, P. (2015). Extraction of lycopene from tomato processing waste: Kinetics and modelling. Food Chemistry, 173, 943–950. doi: https://doi.org/10.1016/j.foodchem.2014.10.127
- Zuorro, A., Fidaleo, M., Lavecchia, R. (2011). Enzyme-assisted extraction of lycopene from tomato processing waste. Enzyme and Microbial Technology, 49 (6-7), 567–573. doi: https://doi.org/10.1016/j.enzmictec.2011.04.020
- Chada, P. S. N., Santos, P. H., Rodrigues, L. G. G., Goulart, G. A. S., Azevedo dos Santos, J. D., Maraschin, M., Lanza, M. (2022). Non-conventional techniques for the extraction of antioxidant compounds and lycopene from industrial tomato pomace (Solanum lycopersicum L.) using spouted bed drying as a pre-treatment. Food Chemistry: X, 13, 100237. doi: https://doi.org/10.1016/j.fochx.2022.100237
- Chemat-Djenni, Z., Ferhat, M. A., Tomao, V., Chemat, F. (2010). Carotenoid Extraction from Tomato Using a Green Solvent Resulting from Orange Processing Waste. Journal of Essential Oil Bearing Plants, 13 (2), 139–147. doi: https://doi.org/10.1080/0972060x.2010.10643803
- Ludwig, K., Rihko-Struckmann, L., Brinitzer, G., Unkelbach, G., Sundmacher, K. (2021). β-Carotene extraction from Dunaliella salina by supercritical CO2. Journal of Applied Phycology, 33 (3), 1435–1445. doi: https://doi.org/10.1007/s10811-021-02399-y
- Zuknik, M. H., Nik Norulaini, N. A., Mohd Omar, A. K. (2012). Supercritical carbon dioxide extraction of lycopene: A review. Journal of Food Engineering, 112 (4), 253–262. doi: https://doi.org/10.1016/j.jfoodeng.2012.05.012
- Hernández, D. E., Magallon, A. P., Arizaga, G. G. C. (2019). Green extraction of lycopene from tomato juice with layered double hydroxide nanoparticles. Micro & Nano Letters, 14 (3), 230–233. doi: https://doi.org/10.1049/mnl.2018.5437
- Murillo Vazquez, R. N., Nuñez, C. P., Kovalenko, V., Kotok, V., Pacheco Moisés, F. P., Macias Lamas, A. M., Carbajal Arízaga, G. G. (2023). Electron Transfer within an Antioxidant Powder Composite with Layered Double Hydroxide Nanoparticles and Tomato Extract. Biointerface Research in Applied Chemistry, 13 (3), 257. doi: https://doi.org/10.33263/BRIAC133.257
- Burmistr, M. V., Boiko, V. S., Lipko, E. O., Gerasimenko, K. O., Gomza, Y. P., Vesnin, R. L. et. al. (2014). Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers. Mechanics of Composite Materials, 50 (2), 213–222. doi: https://doi.org/10.1007/s11029-014-9408-0
- Kovalenko, V., Kotok, V. (2017). Selective anodic treatment of W(WC)-based superalloy scrap. Eastern-European Journal of Enterprise Technologies, 1 (5 (85)), 53–58. doi: https://doi.org/10.15587/1729-4061.2017.91205
- Rajamathi, M., Vishnu Kamath, P., Seshadri, R. (2000). Polymorphism in nickel hydroxide: role of interstratification. Journal of Materials Chemistry, 10 (2), 503–506. doi: https://doi.org/10.1039/a905651c
- Kovalenko, V. L., Kotok, V. A., Sykchin, A., Ananchenko, B. A., Chernyad’ev, A. V., Burkov, A. A. et. al. (2020). Al3+ Additive in the Nickel Hydroxide Obtained by High-Temperature Two-Step Synthesis: Activator or Poisoner for Chemical Power Source Application? Journal of The Electrochemical Society, 167 (10), 100530. doi: https://doi.org/10.1149/1945-7111/ab9a2a
- Kotok, V., Kovalenko, V. (2018). A study of the effect of tungstate ions on the electrochromic properties of Ni(OH)2 films. Eastern-European Journal of Enterprise Technologies, 5 (12 (95)), 18–24. doi: https://doi.org/10.15587/1729-4061.2018.145223
- Kotok, V., Kovalenko, V. (2018). A study of multilayered electrochromic platings based on nickel and cobalt hydroxides. Eastern-European Journal of Enterprise Technologies, 1 (12 (91)), 29–35. doi: https://doi.org/10.15587/1729-4061.2018.121679
- Kovalenko, V., Kotok, V. (2019). Influence of the carbonate ion on characteristics of electrochemically synthesized layered (α+β) nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 1 (6 (97)), 40–46. doi: https://doi.org/10.15587/1729-4061.2019.155738
- Kovalenko, V., Kotok, V. (2019). Anionic carbonate activation of layered (α+β) nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 3 (6 (99)), 44–52. doi: https://doi.org/10.15587/1729-4061.2019.169461
- Kotok, V., Kovalenko, V., Malyshev, V. (2017). Comparison of oxygen evolution parameters on different types of nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 12–19. doi: https://doi.org/10.15587/1729-4061.2017.109770
- Nalawade, P., Aware, B., Kadam, V. J., Hirlekar, R. S. (2009). Layered double hydroxides: A review. Journal of Scientific & Industrial Research, 68, 267–272. Available at: https://www.hazemsakeek.net/wp-content/uploads/2021/06/LDH.pdf
- Zhang, Y., Xu, H., Lu, S. (2021). Preparation and application of layered double hydroxide nanosheets. RSC Advances, 11 (39), 24254–24281. doi: https://doi.org/10.1039/d1ra03289e
- Kovalenko, V., Borysenko, A., Kotok, V., Nafeev, R., Verbitskiy, V., Melnyk, O. (2022). Determination of the dependence of the structure of Zn-Al layered double hydroxides, as a matrix for functional anions intercalation, on synthesis conditions. Eastern-European Journal of Enterprise Technologies, 1 (12 (115)), 12–20. doi: https://doi.org/10.15587/1729-4061.2022.252738
- Kovalenko, V., Borysenko, A., Kotok, V., Nafeev, R., Verbitskiy, V., Melnyk, O. (2022). Determination of technological parameters of Zn-Al layered double hydroxides, as a matrix for functional anions intercalation, under different synthesis conditions. Eastern-European Journal of Enterprise Technologies, 2 (6 (116)), 25–32. doi: https://doi.org/10.15587/1729-4061.2022.254496
- Kotok, V., Kovalenko, V., Vlasov, S. (2018). Investigation of NiAl hydroxide with silver addition as an active substance of alkaline batteries. Eastern-European Journal of Enterprise Technologies, 3 (6 (93)), 6–11. doi: https://doi.org/10.15587/1729-4061.2018.133465
- Kovalenko, V., Kotok, V. (2019). Investigation of characteristics of double Ni–Co and ternary Ni–Co–Al layered hydroxides for supercapacitor application. Eastern-European Journal of Enterprise Technologies, 2 (6 (98)), 58–66. doi: https://doi.org/10.15587/1729-4061.2019.164792
- Solovov, V. A., Nikolenko, N. V., Kovalenko, V. L., Kotok, V. A., Burkov, A. А., Kondrat’ev, D. A. et. al. (2018). Synthesis of Ni(II)-Ti(IV) Layered Double Hydroxides Using Coprecipitation At High Supersaturation Method. ARPN Journal of Engineering and Applied Sciences, 24 (13), 9652–9656. Available at: http://www.arpnjournals.org/jeas/research_papers/rp_2018/jeas_1218_7500.pdf
- Kovalenko, V., Kotok, V., Yeroshkina, A., Zaychuk, A. (2017). Synthesis and characterisation of dyeintercalated nickelaluminium layereddouble hydroxide as a cosmetic pigment. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 27–33. doi: https://doi.org/10.15587/1729-4061.2017.109814
- Kovalenko, V., Kotok, V. (2021). The determination of synthesis conditions and color properties of pigments based on layered double hydroxides with Co as a guest cation. Eastern-European Journal of Enterprise Technologies, 6 (6 (114)), 32–38. doi: https://doi.org/10.15587/1729-4061.2021.247160
- Kovalenko, V., Kotok, V. (2020). Determination of the applicability of ZnAl layered double hydroxide, intercalated by food dye Orange Yellow S, as a cosmetic pigment. Eastern-European Journal of Enterprise Technologies, 5 (12 (107)), 81–89. doi: https://doi.org/10.15587/1729-4061.2020.214847
- Kovalenko, V., Kotok, V. (2020). Tartrazine-intercalated Zn–Al layered double hydroxide as a pigment for gel nail polish: synthesis and characterisation. Eastern-European Journal of Enterprise Technologies, 3 (12 (105)), 29–37. doi: https://doi.org/10.15587/1729-4061.2020.205607
- Kovalenko, V., Kotok, V. (2020). Bifuctional indigocarminintercalated NiAl layered double hydroxide: investigation of characteristics for pigment and supercapacitor application. Eastern-European Journal of Enterprise Technologies, 2 (12 (104)), 30–39. doi: https://doi.org/10.15587/1729-4061.2020.201282
- Mandal, S., Tichit, D., Lerner, D. A., Marcotte, N. (2009). Azoic Dye Hosted in Layered Double Hydroxide: Physicochemical Characterization of the Intercalated Materials. Langmuir, 25 (18), 10980–10986. doi: https://doi.org/10.1021/la901201s
- Mandal, S., Lerner, D. A., Marcotte, N., Tichit, D. (2009). Structural characterization of azoic dye hosted layered double hydroxides. Zeitschrift Für Kristallographie, 224 (5-6), 282–286. doi: https://doi.org/10.1524/zkri.2009.1150
- Wang, Q., Feng, Y., Feng, J., Li, D. (2011). Enhanced thermal- and photo-stability of acid yellow 17 by incorporation into layered double hydroxides. Journal of Solid State Chemistry, 184 (6), 1551–1555. doi: https://doi.org/10.1016/j.jssc.2011.04.020
- Liu, J. Q., Zhang, X. C., Hou, W. G., Dai, Y. Y., Xiao, H., Yan, S. S. (2009). Synthesis and Characterization of Methyl-Red/Layered Double Hydroxide (LDH) Nanocomposite. Advanced Materials Research, 79-82, 493–496. doi: https://doi.org/10.4028/www.scientific.net/amr.79-82.493
- Tian, Y., Wang, G., Li, F., Evans, D. G. (2007). Synthesis and thermo-optical stability of o-methyl red-intercalated Ni–Fe layered double hydroxide material. Materials Letters, 61 (8-9), 1662–1666. doi: https://doi.org/10.1016/j.matlet.2006.07.094
- Hwang, S.-H., Jung, S.-C., Yoon, S.-M., Kim, D.-K. (2008). Preparation and characterization of dye-intercalated Zn–Al-layered double hydroxide and its surface modification by silica coating. Journal of Physics and Chemistry of Solids, 69 (5-6), 1061–1065. doi: https://doi.org/10.1016/j.jpcs.2007.11.002
- Tang, P., Deng, F., Feng, Y., Li, D. (2012). Mordant Yellow 3 Anions Intercalated Layered Double Hydroxides: Preparation, Thermo- and Photostability. Industrial & Engineering Chemistry Research, 51 (32), 10542–10545. doi: https://doi.org/10.1021/ie300645b
- Tang, P., Feng, Y., Li, D. (2011). Fabrication and properties of Acid Yellow 49 dye-intercalated layered double hydroxides film on an alumina-coated aluminum substrate. Dyes and Pigments, 91 (2), 120–125. doi: https://doi.org/10.1016/j.dyepig.2011.03.012
- Tang, P., Feng, Y., Li, D. (2011). Improved thermal and photostability of an anthraquinone dye by intercalation in a zinc-aluminum layered double hydroxides host. Dyes and Pigments, 90 (3), 253–258. doi: https://doi.org/10.1016/j.dyepig.2011.01.007
- Khan, A. I., Ragavan, A., Fong, B., Markland, C., O’Brien, M., Dunbar, T. G. et. al. (2009). Recent Developments in the Use of Layered Double Hydroxides as Host Materials for the Storage and Triggered Release of Functional Anions. Industrial & Engineering Chemistry Research, 48 (23), 10196–10205. doi: https://doi.org/10.1021/ie9012612
- Silverio, F., dos Reis, M. J., Tronto, J., Valim, J. B. (2007). Removal of aliphatic amino acids by hybrid organic-inorganic layered compounds. Applied Surface Science, 253 (13), 5756–5761. doi: https://doi.org/10.1016/j.apsusc.2006.12.040
- Arizaga, G. G. C., da Costa Gardolinski, J. E. F., Schreiner, W. H., Wypych, F. (2009). Intercalation of an oxalatooxoniobate complex into layered double hydroxide and layered zinc hydroxide nitrate. Journal of Colloid and Interface Science, 330 (2), 352–358. doi: https://doi.org/10.1016/j.jcis.2008.10.025
- Cursino, A. C. T., Rives, V., Arizaga, G. G. C., Trujillano, R., Wypych, F. (2015). Rare earth and zinc layered hydroxide salts intercalated with the 2-aminobenzoate anion as organic luminescent sensitizer. Materials Research Bulletin, 70, 336–342. doi: https://doi.org/10.1016/j.materresbull.2015.04.055
- Kovalenko, V., Kotok, V. (2019). “Smart” anti-corrosion pigment based on layered double hydroxide: construction and characterization. Eastern-European Journal of Enterprise Technologies, 4 (12 (100)), P. 23–30. doi: https://doi.org/10.15587/1729-4061.2019.176690
- Pillai, S. K., Kleyi, P., de Beer, M., Mudaly, P. (2020). Layered double hydroxides: An advanced encapsulation and delivery system for cosmetic ingredients-an overview. Applied Clay Science, 199, 105868. doi: https://doi.org/10.1016/j.clay.2020.105868
- Viseras, C., Sánchez-Espejo, R., Palumbo, R., Liccardi, N., García-Villén, F., Borrego-Sánchez, A. et. al. (2021). Clays in cosmetics and personal-care products. Clays and Clay Minerals, 69 (5), 561–575. doi: https://doi.org/10.1007/s42860-021-00154-5
- Choi, S.-J., Kim, Y.-R. (2013). Bioinspired Layered Nanoclays for Nutraceutical Delivery System. Advances in Applied Nanotechnology for Agriculture, 207–220. doi: https://doi.org/10.1021/bk-2013-1143.ch012
- Andrade, K. N., Pérez, A. M. P., Arízaga, G. G. C. (2019). Passive and active targeting strategies in hybrid layered double hydroxides nanoparticles for tumor bioimaging and therapy. Applied Clay Science, 181, 105214. doi: https://doi.org/10.1016/j.clay.2019.105214
- Arízaga, G. G. C., Jiménez, C. S., Saavedra, K. J. P., Lamas, A. M. M., Pérez, A. M. P. (2016). Folate-intercalated layered double hydroxide as a vehicle for cyclophosphamide, a non-ionic anti-cancer drug. Micro & Nano Letters, 11 (7), 360–362. doi: https://doi.org/10.1049/mnl.2016.0106
- Abdolmohammad-Zadeh, H., Hammami Oskooyi, S. M. (2014). Solid-phase extraction of l-tryptophan from food samples utilizing a layered double hydroxide nano-sorbent prior to its determination by spectrofluorometry. Journal of the Iranian Chemical Society, 12 (6), 1115–1122. doi: https://doi.org/10.1007/s13738-014-0572-x
- Ghotbi, M. Y., Hussein, M. Z. bin, Yahaya, A. H., Rahman, M. Z. A. (2009). LDH-intercalated d-gluconate: Generation of a new food additive-inorganic nanohybrid compound. Journal of Physics and Chemistry of Solids, 70 (6), 948–954. doi: https://doi.org/10.1016/j.jpcs.2009.05.007
- Supun Samindra, K. M., Kottegoda, N. (2014). Encapsulation of curcumin into layered double hydroxides. Nanotechnology Reviews, 3 (6). doi: https://doi.org/10.1515/ntrev-2014-0018
- Hong, M.-M., Oh, J.-M., Choy, J.-H. (2008). Encapsulation of Flavor Molecules, 4-Hydroxy-3-Methoxy Benzoic Acid, into Layered Inorganic Nanoparticles for Controlled Release of Flavor. Journal of Nanoscience and Nanotechnology, 8 (10), 5018–5021. doi: https://doi.org/10.1166/jnn.2008.1385
- Kovalenko, V., Kotok, V., Borysenko, A., Dopira, A., Rezvantseva, A., Nafeev, R. et. al. (2022). Investigation of the characteristics of Zn-Al layered double hydroxides, intercalated with natural dyes from spices, as a cosmetic pigments. Eastern-European Journal of Enterprise Technologies, 3 (12 (117)), 52–59. doi: https://doi.org/10.15587/1729-4061.2022.260170
- Kulaitiene, J., Jariene, E., Danilcenko, H. et. al. (2014). Chemical composition of pumpkin (Cucurbita maxima D.) flesh flours used for food. Journal of Food, Agriculture & Environment, 12 (3-4), 61–64. Available at: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.655.2627&rep=rep1&type=pdf
- Juknevičienė, E., Danilčenko, H., Jarienė, E., Živatkauskienė, V., Zeise, J., Fritz, J. (2021). The effect of biodynamic preparations on growth and fruit quality of giant pumpkin (Cucurbita maxima D.). Chemical and Biological Technologies in Agriculture, 8 (1). doi: https://doi.org/10.1186/s40538-021-00258-z
- Biesiada, A., Nawirska, A., Kucharska, A., Sokół-Łętowska, A. (2011). Chemical composition of pumpkin fruit depending on cultivar and storage. Ecological Chemistry and Engineering, 18 (1), 9–18. Available at: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BPG8-0050-0001
- Azevedo-Meleiro, C. H., Rodriguez-Amaya, D. B. (2007). Qualitative and Quantitative Differences in Carotenoid Composition among Cucurbita moschata, Cucurbita maxima, and Cucurbita pepo. Journal of Agricultural and Food Chemistry, 55 (10), 4027–4033. doi: https://doi.org/10.1021/jf063413d
- Pumpkin, raw. FoodData Central. U. S. Department of agriculture. Available at: https://fdc.nal.usda.gov/fdc-app.html#/food-details/168448/nutrients
- Squash, winter, butternut, raw. FoodData Central. U. S. Department of agriculture. Available at: https://fdc.nal.usda.gov/fdc-app.html#/food-details/169295/nutrients
- Delhoyo, C. (2007). Layered double hydroxides and human health: An overview. Applied Clay Science, 36 (1-3), 103–121. doi: https://doi.org/10.1016/j.clay.2006.06.010
- Ngew, E., Phue, W. H., Liu, Z., George, S. (2022). Composite of Layered Double Hydroxide with Casein and Carboxymethylcellulose as a White Pigment for Food Application. Foods, 11 (8), 1120. doi: https://doi.org/10.3390/foods11081120
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2022 Vadym Kovalenko, Valerii Kotok, Anton Dopira, Gregorio Guadalupe Carbajal Arizaga, Volodymyr Verbitskiy, Volodymyr Medianyk, Oksana Berzenina, Inna Anataichuk
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.