Методи сегментування зображень з безпілотних літальних апаратів на основі k-means та генетичного алгоритму
DOI:
https://doi.org/10.15587/1729-4061.2022.263387Ключові слова:
безпілотний літальний апарат, сегментування зображення, експериментальне дослідження, k-means, генетичний алгоритмАнотація
Об’єктом дослідження є процес сегментування зображень з безпілотних літальних апаратів. Встановлено, що методи сегментування на основі k-means та генетичного алгоритму якісно працюють на зображеннях з космічних систем спостереження. Пропонується використання методів сегментування на основі k-means та генетичного алгоритму для сегментування зображень з безпілотних літальних апаратів. Визначені основні етапи методів сегментування зображень на основі k-means та генетичного алгоритму.
Проведено експериментальне дослідження сегментування зображень з безпілотних літальних апаратів. На відміну від відомих, сегментування зображення методом на основі k-means, яке успішно працює на зображеннях з космічних систем спостереження, не може бути напряму застосовано до сегментування зображення з безпілотних літальних апаратів. На відміну від відомих, сегментування зображення методом на основі генетичного алгоритму, яке успішно працює на зображеннях з космічних систем спостереження, також не може бути напряму застосовано до сегментування зображення з безпілотних літальних апаратів.
Проведено оцінювання якості сегментування зображень з безпілотних літальних апаратів методами на основі k-means та генетичного алгоритму. Встановлено, що:
– середній рівень помилок І роду складає 70 % та 51 % при сегментуванні зображення з безпілотного літального апарату методами на основі k-means та генетичного алгоритму відповідно;
– середній рівень помилок ІІ роду складає 61 % та 43 % при сегментуванні зображення з безпілотного літального апарату методами на основі k-means та генетичного алгоритму відповідно.
Зроблено висновок про подовження подальших досліджень щодо розробки методів сегментування зображень з безпілотних літальних апаратів
Посилання
- Primatesta, S., Rizzo, A., la Cour-Harbo, A. (2019). Ground Risk Map for Unmanned Aircraft in Urban Environments. Journal of Intelligent & Robotic Systems, 97 (3-4), 489–509. doi: https://doi.org/10.1007/s10846-019-01015-z
- Wang, H., Cheng, H., Hao, H. (2020). The Use of Unmanned Aerial Vehicle in Military Operations. Lecture Notes in Electrical Engineering, 939–945. doi: https://doi.org/10.1007/978-981-15-6978-4_108
- Drones Vs. Satellites for the Agri-Sector Use. Available at: https://eos.com/blog/drones-vs-satellites/
- Ruwaimana, M., Satyanarayana, B., Otero, V., M. Muslim, A., Syafiq A., M., Ibrahim, S. et. al. (2018). The advantages of using drones over space-borne imagery in the mapping of mangrove forests. PLOS ONE, 13 (7), e0200288. doi: https://doi.org/10.1371/journal.pone.0200288
- Military Imaging and Surveillance Technology (MIST) (Archived). Available at: https://www.darpa.mil/program/military-imaging-and-surveillance-technology
- Ruban, I., Khudov, H. (2019). Swarm Methods of Image Segmentation. Studies in Computational Intelligence, 53–99. doi: https://doi.org/10.1007/978-3-030-35480-0_2
- Llano, E. G., Roig, D. O., Cabrera, Y. C. (2018). Unsupervised Segmentation of Agricultural Crops in UAV RGB Images. Revista Cubana de Ciencias Informáticas, 12 (4), 17–28.
- Kinahan, J., Smeaton, A. F. (2021). Image Segmentation to Identify Safe Landing Zones for Unmanned Aerial Vehicles. Proceedings of the 29th Irish Conference on Artificial Intelligence and Cognitive Science AICS'2021. doi: https://doi.org/10.48550/arXiv.2111.14557
- Pap, M., Kiraly, S., Moljak, S. (2019). Investigating the usability of uav obtained multispectral imagery in tree species segmentation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W18, 159–165. doi: https://doi.org/10.5194/isprs-archives-xlii-2-w18-159-2019
- Treboux, J., Genoud, D. (2018). Improved Machine Learning Methodology for High Precision Agriculture. 2018 Global Internet of Things Summit (GIoTS). doi: https://doi.org/10.1109/giots.2018.8534558
- Parsons, M., Bratanov, D., Gaston, K., Gonzalez, F. (2018). UAVs, Hyperspectral Remote Sensing, and Machine Learning Revolutionizing Reef Monitoring. Sensors, 18 (7), 2026. doi: https://doi.org/10.3390/s18072026
- Lin, Z., Doyog, N. D., Huang, S.-F., Lin, C. (2021). Segmentation and Classification of UAV-based Orthophoto of Watermelon Field Using Support Vector Machine Technique. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. doi: https://doi.org/10.1109/igarss47720.2021.9553715
- Miyamoto, H., Momose, A., Iwami, S. (2018). UAV image classification of a riverine landscape by using machine learning techniques. Geophysical Research Abstracts, 20. EGU2018-5919.
- Son, J., Jung, I., Park, K., Han, B. (2015). Tracking-by-Segmentation with Online Gradient Boosting Decision Tree. 2015 IEEE International Conference on Computer Vision (ICCV). doi: https://doi.org/10.1109/ICCV.2015.350
- Huang, L., Song, J., Yu, X., Fang, L. (2019). Unmanned Aerial Vehicle Remote Sensing Image Segmentation Method by Combining Superpixels with multi-features Distance Measure. IOP Conference Series: Earth and Environmental Science, 234, 012022. doi: https://doi.org/10.1088/1755-1315/234/1/012022
- Zimudzi, E., Sanders, I., Rollings, N., Omlin, C. (2018). Segmenting mangrove ecosystems drone images using SLIC superpixels. Geocarto International, 34 (14), 1648–1662. doi: https://doi.org/10.1080/10106049.2018.1497093
- Xiang, S., Xu, J., Zhao, J., Li, Y., Zhang, S. (2015). A novel LBP-Mean shift segmentation algorithm for UAV remote sensing images based on LBP textural features and improved Mean shift algorithm. Proceedings of the 3rd International Conference on Mechatronics, Robotics and Automation. doi: https://doi.org/10.2991/icmra-15.2015.79
- Wang, H., Shen, Z., Zhang, Z., Xu, Z., Li, S., Jiao, S., Lei, Y. (2021). Improvement of Region-Merging Image Segmentation Accuracy Using Multiple Merging Criteria. Remote Sensing, 13 (14), 2782. doi: https://doi.org/10.3390/rs13142782
- Xiaohai, S., Yan, T., Han, F., Zhida, W., Xuewu, Z. (2020). Crop identification using UAV image segmentation. Second Target Recognition and Artificial Intelligence Summit Forum, 11427. doi: https://doi.org/10.1117/12.2552195
- Bhatnagar, S., Gill, L., Ghosh, B. (2020). Drone Image Segmentation Using Machine and Deep Learning for Mapping Raised Bog Vegetation Communities. Remote Sensing, 12 (16), 2602. doi: https://doi.org/10.3390/rs12162602
- Marcu, A., Licaret, V., Costea, D., Leordeanu, M. (2021). Semantics Through Time: Semi-supervised Segmentation of Aerial Videos with Iterative Label Propagation. Lecture Notes in Computer Science, 537–552. doi: https://doi.org/10.1007/978-3-030-69525-5_32
- Khudov, H., Makoveichuk, O., Butko, I., Gyrenko, I., Stryhun, V., Bilous, O. et. al. (2022). Devising a method for segmenting camouflaged military equipment on images from space surveillance systems using a genetic algorithm. Eastern-European Journal of Enterprise Technologies, 3 (9 (117)), 6–14. doi: https://doi.org/10.15587/1729-4061.2022.259759
- Khudov, H., Makoveichuk, O., Khizhnyak, I., Oleksenko, O., Khazhanets, Y., Solomonenko, Y. et. al. (2022). Devising a method for segmenting complex structured images acquired from space observation systems based on the particle swarm algorithm. Eastern-European Journal of Enterprise Technologies, 2 (9 (116)), 6–13. doi: https://doi.org/10.15587/1729-4061.2022.255203
- Khudov, H., Ruban, I., Makoveichuk, O., Pevtsov, H., Khudov, V., Khizhnyak, I. et. al. (2020). Development of methods for determining the contours of objects for a complex structured color image based on the ant colony optimization algorithm. EUREKA: Physics and Engineering, 1, 34–47. doi: https://doi.org/10.21303/2461-4262.2020.001108
- Ruban, I., Khudov, H., Makoveichuk, O., Khizhnyak, I., Lukova-Chuiko, N., Pevtsov, H. et. al. (2019). Method for determining elements of urban infrastructure objects based on the results from air monitoring. Eastern-European Journal of Enterprise Technologies, 4 (9 (100)), 52–61. doi: https://doi.org/10.15587/1729-4061.2019.174576
- De O. Bastos, L., Liatsis, P., Conci, A. (2008). Automatic texture segmentation based on k-means clustering and efficient calculation of co-occurrence features. 2008 15th International Conference on Systems, Signals and Image Processing. doi: https://doi.org/10.1109/iwssip.2008.4604387
- Hung, C.-C., Song, E., Lan, Y. (2019). Image Texture, Texture Features, and Image Texture Classification and Segmentation. Image Texture Analysis, 3–14. doi: https://doi.org/10.1007/978-3-030-13773-1_1
- Tian, Y., Li, Y., Liu, D., Luo, R. (2016). FCM texture image segmentation method based on the local binary pattern. 2016 12th World Congress on Intelligent Control and Automation (WCICA). doi: https://doi.org/10.1109/wcica.2016.7578571
- Madushan, D. (2017). Introduction to K-means Clustering. Available at: https://medium.com/@dilekamadushan/introduction-to-k-means-clustering-7c0ebc997e00
- Thrun, M. C. (2018). Approaches to Cluster Analysis. Projection-Based Clustering through Self-Organization and Swarm Intelligence, 21–31. doi: https://doi.org/10.1007/978-3-658-20540-9_3
- Morissette, L., Chartier, S. (2013). The k-means clustering technique: General considerations and implementation in Mathematica. Tutorials in Quantitative Methods for Psychology, 9 (1), 15–24. doi: https://doi.org/10.20982/tqmp.09.1.p015
- Pérez-Ortega, J., Nely Almanza-Ortega, N., Vega-Villalobos, A., Pazos-Rangel, R., Zavala-Díaz, C., Martínez-Rebollar, A. (2020). The K-Means Algorithm Evolution. Introduction to Data Science and Machine Learning. doi: https://doi.org/10.5772/intechopen.85447
- Kumar, J. M., Nanda, R., Rath, R. K., Rao, G. T. (2020). Image Segmentation using K-means Clustering. Journal of Advanced Science, 29 (6s), 3700–3704. Available at: http://sersc.org/journals/index.php/IJAST/article/view/23282
- Anfyorov, M. A. (2019). Genetic clustering algorithm. Russian Technological Journal, 7 (6), 134–150. doi: https://doi.org/10.32362/2500-316x-2019-7-6-134-150
- Oleksenko, O., Khudov, H., Petrenko, K., Horobets, Y., Kolianda, V., Solomonenko, Y. (2021). The Development of the Method of Radar Observation System Construction of the Airspace on the Basis of Genetic Algorithm. International Journal of Emerging Technology and Advanced Engineering, 11 (8), 23–30. doi: https://doi.org/10.46338/ijetae0821_04
- Ukraina: Video. Available at: https://t.me/+2ACsehbN8HI2M2Iy
- Beaubien, J. (2022). In the Russia-Ukraine war, drones are one of the most powerful weapons. Available at: https://www.npr.org/2022/07/30/1114024870/russia-ukraine-war-drones
- Ruban, I., Khudov, V., Makoveichuk, O., Khudov, H., Khizhnyak, I. (2018). A Swarm Method for Segmentation of Images Obtained from On-Board Optoelectronic Surveillance Systems. 2018 International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T). doi: https://doi.org/10.1109/infocommst.2018.8632045
- Khudov, G. V. (2003). Features of optimization of two-alternative decisions by joint search and detection of objects. Problemy Upravleniya I Informatiki (Avtomatika), 5, 51–59. Available at: https://www.researchgate.net/publication/291431400_Features_of_optimization_of_two-alternative_decisions_by_joint_search_and_detection_of_objects
- Khudov, H., Makoveichuk, O., Misiuk, D., Pievtsov, H., Khizhnyak, I., Solomonenko, Y. (2022). Devising a method for processing the image of a vehicle's license plate when shooting with a smartphone camera. Eastern-European Journal of Enterprise Technologies, 1 (2 (115)), 6–21. doi: https://doi.org/10.15587/1729-4061.2022.252310
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2022 Igor Ruban, Hennadii Khudov, Oleksandr Makoveichuk, Vladyslav Khudov, Temir Kalimulin, Sergey Glukhov, Pavlo Arkushenko, Taras Kravets, Irina Khizhnyak, Nazar Shamrai
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.
- Citations
- Citation Indexes: 10
- Captures
- Readers: 3