Визначення закономірностей вертикальної навантаженості концепту зйомного модуля для довгомірних вантажів
DOI:
https://doi.org/10.15587/1729-4061.2022.266855Ключові слова:
транспортна механіка, зйомний модуль, несуча конструкція, міцність конструкції, адаптація конструкціїАнотація
Об’єктом дослідження є процеси виникнення, сприйняття та перерозподілу навантажень в несучій конструкції зйомного модуля для перевезень довгомірних вантажів.
Для адаптації вагонів-платформ до перевезень довгомірних вантажів пропонується впровадження зйомного модуля з пружно-фрикційними зв’язками в конструкції.
З метою вибору оптимальних з точки зору мінімальної матеріалоємності профілів виконання зйомного модуля проведено розрахунок у програмному комплексі “Ліра”. За результатами розрахунку створено просторову модель концепту зйомного модуля.
Для визначення динамічних навантажень, які діють на вагон-платформу, завантажений зйомним модулем проведено математичне моделювання. Встановлено, що використання пружно-фрикційних зв’язків в конструкції зйомного модуля сприяє зменшенню його динамічної навантаженості, а також вагона-платформи на 4,6 %. Отримане прискорення враховане при розрахунках на міцність зйомного модуля. Результати розрахунку показали, що міцність зйомного модуля при експлуатаційних навантаженнях забезпечується.
Особливістю отриманих результатів є те, що запропонована конструкція зйомного модуля дозволяє не тільки адаптувати вагон-платформу до перевезень довгомірних вантажів, а і зменшити його навантаженість в експлуатації.
Сферою практичного використання отриманих результатів є машинобудівна галузь, зокрема, залізничний транспорт. Необхідно сказати, що умовами практичного використання результатів є впровадження пружно-фрикційних зв’язків в конструкцію зйомного модуля.
Проведені дослідження сприятимуть створенню рекомендацій щодо проектування сучасних конструкцій транспортних засобів, зокрема зйомного типу, а також підвищенню ефективності залізничних перевезень
Посилання
- Lovska, A., Fomin, O., Kučera, P., Píštěk, V. (2020). Calculation of Loads on Carrying Structures of Articulated Circular-Tube Wagons Equipped with New Draft Gear Concepts. Applied Sciences, 10 (21), 7441. doi: https://doi.org/10.3390/app10217441
- Fomin, O., Lovska, A., Khara, M., Nikolaienko, I., Lytvynenko, A., Sova, S. (2022). Adapting the load-bearing structure of a gondola car for transporting high-temperature cargoes. Eastern-European Journal of Enterprise Technologies, 2 (7 (116)), 6–13. doi: https://doi.org/10.15587/1729-4061.2022.253770
- Lewandowski, K. (2006). Nadwozia wymienne (swap body) w bezterminalowym systemie transportu szynowego. Sistemy transportowe, 6, 53–55. Available at: https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BGPK-1398-5437/c/Lewandowski.pdf
- Chuan-jin, O., Bing-tao, L. (2020). Research and application of new multimodal transport equipment-swap bodies in China. E3S Web of Conferences, 145, 02001. doi: https://doi.org/10.1051/e3sconf/202014502001
- Putyato, A. V. (2011). Osobennosti rascheta na prochnost' vagona-platformy dlya perevozki lesnykh gruzov. Vestnik Belorusskogo gosudarstvennogo universiteta transporta: Nauka i transport, 1 (22), 13–18.
- Kelrikh, M. B., Fedosov-Nikonov, D. V. (2016). Doslidzhennia mitsnosti dovhobaznoi platformy. Visnyk Skhidnoukrainskoho natsionalnoho universytetu imeni Volodymyra Dalia, 1 (225), 90–94.
- Silva, R., Ribeiro, D., Bragança, C., Costa, C., Arêde, A., Calçada, R. (2021). Model Updating of a Freight Wagon Based on Dynamic Tests under Different Loading Scenarios. Applied Sciences, 11 (22), 10691. doi: https://doi.org/10.3390/app112210691
- Shaposhnyk, V., Shykunov, O., Reidemeister, A., Muradian, L., Potapenko, O. (2021). Determining the possibility of using removable equipment for transporting 20- and 40-feet-long containers on an universal platform wagon. Eastern-European Journal of Enterprise Technologies, 1 (7 (109)), 14–21. doi: https://doi.org/10.15587/1729-4061.2021.225090
- Lovska, A., Fomin, O., Píštěk, V., Kučera, P. (2020). Dynamic Load Modelling within Combined Transport Trains during Transportation on a Railway Ferry. Applied Sciences, 10 (16), 5710. doi: https://doi.org/10.3390/app10165710
- Tretiak, E. V., Sulym, A. O., Khozia, P. O. (2020). Osnovni typy konstruktsiy dovhobaznykh vahoniv – platform ta doslidzhennia yikh mitsnosnykh kharakterystyk. Reikovyi rukhomyi sklad, 20, 27–33. Available at: https://ukrndiv.com.ua/wp-content/uploads/2020/06/27-33.pdf
- Petrukhin, V. M. (2007). Pat. No. 24430 UA. Vantazhna odynytsia. No. u200703159; declareted: 26.03.2007; published: 25.06.2007, Bul. No. 9. Available at: https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=106417
- Petrukhin, V. M. (1997). Pat. No. 29934 UA. Prystriy dlia rozmishchennia i kriplennia vantazhiv na platformi. No. u97105256; declareted: 29.10.1997; published: 15.11.2000, Bul. No. 6. Available at: https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=79408
- Petrukhin, V. M. (2008). Pat. No. 39951 UA. Vantazhna odynytsia. No. u200809416; declareted: 18.07.2008; published: 25.03.2009, Bul. No. 6. Available at: https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=130253
- Barabash, M. S., Soroka, M. M., Surianinov, M. H. (2018). Neliniyna budivelna mekhanika z PK Lira-Sapr. Odessa: Ekolohiya, 248.
- Vatulia, G., Lobiak, A., Orel, Y. (2017). Simulation of performance of circular CFST columns under short-time and long-time load. MATEC Web of Conferences, 116, 02036. doi: https://doi.org/10.1051/matecconf/201711602036
- Iwnicki, S. D., Stichel, S., Orlova, A., Hecht, M. (2015). Dynamics of railway freight vehicles. Vehicle System Dynamics, 53 (7), 995–1033. doi: https://doi.org/10.1080/00423114.2015.1037773
- Yang, C., Li, F., Huang, Y., Wang, K., He, B. (2013). Comparative study on wheel–rail dynamic interactions of side-frame cross-bracing bogie and sub-frame radial bogie. Journal of Modern Transportation, 21 (1), 1–8. doi: https://doi.org/10.1007/s40534-013-0001-3
- Domin, Yu. V., Cherniak, H. Yu. (2003). Osnovy dynamiky vahoniv. Kyiv: KUETT, 269.
- Masliev, V. H., Kelrikh, M. B. (2016). Aktualni problemy dynamiky vahoniv. Kharkiv: UkrDUZT, 97.
- Fomin, O., Lovska, A. (2021). Determination of dynamic loading of bearing structures of freight wagons with actual dimensions. Eastern-European Journal of Enterprise Technologies, 2 (7 (110)), 6–14. doi: https://doi.org/10.15587/1729-4061.2021.220534
- Ibragimov, N. N., Rakhimov, R. V., Khadzhimukhamedova, M. A. (2015). Razrabotka konstruktsii konteynera dlya perevozki plodoovoschnoy produktsii. Molodoy ucheniy, 21 (101), 168–173. Available at: https://moluch.ru/archive/101/22929/
- Bhattacharyya, R., Hazra, A. (2013). A study on Stress analysis of ISO tank container. 58th Congress of The Indian Society of Theoretical and Applied Mechanics. Available at: https://www.researchgate.net/publication/316320046_A_study_on_stress_analysis_of_ISO_tank_container
- Fomin, O., Gorbunov, M., Gerlici, J., Vatulia, G., Lovska, A., Kravchenko, K. (2021). Research into the Strength of an Open Wagon with Double Sidewalls Filled with Aluminium Foam. Materials, 14 (12), 3420. doi: https://doi.org/10.3390/ma14123420
- Lovska, A., Fomin, O., Píštěk, V., Kučera, P. (2020). Dynamic Load and Strength Determination of Carrying Structure of Wagons Transported by Ferries. Journal of Marine Science and Engineering, 8 (11), 902. doi: https://doi.org/10.3390/jmse8110902
- Nurmanova, V., Bagheri, M., Phung, T., Panda, S. K. (2017). Feasibility study on wind energy harvesting system implementation in moving trains. Electrical Engineering, 100 (3), 1837–1845. doi: https://doi.org/10.1007/s00202-017-0664-6
- Stoilov, V., Simić, G., Purgić, S., Milković, D., Slavchev, S., Radulović, S., Maznichki, V. (2019). Comparative analysis of the results of theoretical and experimental studies of freight wagon Sdggmrss-twin. IOP Conference Series: Materials Science and Engineering, 664 (1), 012026. doi: https://doi.org/10.1088/1757-899x/664/1/012026
- Šťastniak, P., Moravčík, M., Smetanka, L. (2019). Investigation of strength conditions of the new wagon prototype type Zans. MATEC Web of Conferences, 254, 02037. doi: https://doi.org/10.1051/matecconf/201925402037
- Shvabiuk, V. I. (2016). Opir materialiv. Kyiv: Znannia, 400.
- Kutsenko, A., Bondar, M., Chausov, M. (2019). Prykladna mekhanika (opir materialiv). Kyiv: Tsentr navchalnoi literatury, 736.
- Siasiev, A. V. (2007). Dyferentsialni rivniannia. Dnipropetrovsk: Vyd-vo DNU, 356.
- Lovskaya, A. (2014). Assessment of dynamic efforts to bodies of wagons at transportation with railway ferries. Eastern-European Journal of Enterprise Technologies, 3( 4 (69)), 36–41. doi: https://doi.org/10.15587/1729-4061.2014.24997
- Nerubatskyi, V., Plakhtii, O., Hordiienko, D. (2021). Control and Accounting of Parameters of Electricity Consumption in Distribution Networks. 2021 XXXI International Scientific Symposium Metrology and Metrology Assurance (MMA). doi: https://doi.org/10.1109/mma52675.2021.9610907
- Dižo, J., Harušinec, J., Blatnický, M. (2017). Structural Analysis of a Modified Freight Wagon Bogie Frame. MATEC Web of Conferences, 134, 00010. doi: https://doi.org/10.1051/matecconf/201713400010
- Dudnyk, V., Sinenko, Y., Matsyk, M., Demchenko, Y., Zhyvotovskyi, R., Repilo, I. et al. (2020). Development of a method for training artificial neural networks for intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (2 (105)), 37–47. doi: https://doi.org/10.15587/1729-4061.2020.203301
- Nalapko, O., Shyshatskyi, A., Ostapchuk, V., Mahdi, Q. A., Zhyvotovskyi, R., Petruk, S. et al. (2021). Development of a method of adaptive control of military radio network parameters. Eastern-European Journal of Enterprise Technologies, 1 (9 (109)), 18–32. doi: https://doi.org/10.15587/1729-4061.2021.225331
- Lu, M., Chen, Y., Morphet, R., Lu, Y., Li, E. (2019). The spatial competition between containerised rail and sea transport in Eurasia. Palgrave Communications, 5 (1). doi: https://doi.org/10.1057/s41599-019-0334-6
- Fomin, O., Lovska, A., Melnychenko, O., Shpylovyi, I., Masliyev, V., Bambura, O., Klymenko, M. (2019). Determination of dynamic load features of tank containers when transported by rail ferry. Eastern-European Journal of Enterprise Technologies, 5 (7 (101)), 19–26. doi: https://doi.org/10.15587/1729-4061.2019.177311
- Domin, Yu. V. (2001). Zaliznychna tekhnika mizhnarodnykh transportnykh system (vantazhni perevezennia). Kyiv: “Yunikom-Pres”, 342.
- Lovskaya, A., Ryibin, A. (2016). The study of dynamic load on a wagon–platform at a shunting collision. Eastern-European Journal of Enterprise Technologies, 3 (7 (81)), 4–8. doi: https://doi.org/10.15587/1729-4061.2016.72054
- Nikitchenko, A., Artiukh, V., Shevchenko, D., Prakash, R. (2016). Evaluation of Interaction Between Flat Car and Container at Dynamic Coupling of Flat Cars. MATEC Web of Conferences, 73, 04008. doi: https://doi.org/10.1051/matecconf/20167304008
- Artiukh, V., Nikitchenko, A., Ignatovich, I., Prykina, L. (2017). The prospects of creation of the draft gear with the polyurethane resin elastic element for the rolling stock. IOP Conference Series: Earth and Environmental Science, 90, 012191. doi: https://doi.org/10.1088/1755-1315/90/1/012191
- Gevorkyan, E., Nerubatskyi, V., Chyshkala, V., Morozova, O. (2021). Revealing specific features of structure formation in composites based on nanopowders of synthesized zirconium dioxide. Eastern-European Journal of Enterprise Technologies, 5 (12 (113)), 6–19. doi: https://doi.org/10.15587/1729-4061.2021.242503
- Lytovchenko, S. V., Gevorkyan, E. S., Nerubatskyi, V. P., Chyshkala, V. O., Voloshyna, L. V. (2022). A Study of the Peculiarities of Molding and Structure Formation of Compacted Multicomponent Silicide Composites. Journal of Superhard Materials, 44 (3), 176–190. doi: https://doi.org/10.3103/s1063457622030054
- Lee, W. G., Kim, J.-S., Sun, S.-J., Lim, J.-Y. (2018). The next generation material for lightweight railway car body structures: Magnesium alloys. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 232 (1), 25–42. doi: https://doi.org/10.1177/0954409716646140
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2022 Glib Vatulia, Alyona Lovska, Mykhailo Pavliuchenkov, Volodymyr Nerubatskyi, Andrii Okorokov, Denys Hordiienko, Roman Vernigora, Irina Zhuravel
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.