Визначення середнього розміру попередньо подрібнених вологих частинок кормів у молоткових подрібнювачах

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2023.268519

Ключові слова:

довжина подрібнених частинок, молотковий робочий орган, молотки, крок розміщення молотків

Анотація

В умовах сільського господарства виникає необхідність подрібнення кормів, що мають різну ступінь вологості. Тому вибір універсальних робочих органів є об’єктом дослідження, а теоретичне визначення середнього розміру попередньо подрібнених кормових частинок має важливе науково-практичне значення і є проблемою, яку необхідно вирішити. Виходячи з цього, запропоновано конструктивно-технологічну схему подрібнювача, що має універсальний подрібнюючий робочий орган. Подрібнюючий апарат має молотковий робочий орган, що має ріжучі грані. При цьому молотки з ріжучими гранями подрібнюють вологу масу, створюють повітряний потік і при високій швидкості працюють як прискорювачі потоку. У результаті теоретичних досліджень було визначено кроки розміщення цих робочих органів. Отримані аналітичні вирази визначення середньої довжини попередньо подрібнених кормових частинок залежно від відстані між гранями змінних ножових робочих органів, тобто від кроку розміщення їх у рядах. При цьому результати розрахунку показали, що при відстані між гранями змінних молотків 20 мм значення середньої довжини подрібнених частинок дорівнювало 38,38 мм. Середній розмір попередньо подрібнених частинок з кормової сировини, призначеної за рецептурами для сільськогосподарських тварин, становив 37,64 мм, тобто різниця між теоретичним та дійсним значенням становить лише 2,0 %. Це доводить достовірність отриманого аналітичного виразу, що забезпечує визначення основного параметра робочого органу, що подрібнює, тобто кроку розміщення радіальних ножів у рядах. Запропонований спосіб визначення середньої довжини подрібнених частинок дозволяє теоретично знаходити та планувати необхідну крупність частинок

Спонсор дослідження

  • This research has been/was/is funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP09259673).

Біографії авторів

Tokhtar Abilzhanuly, Scientific Production Center of Agricultural Engineering, LTD

Doctor of Technical Sciences, Professor

The Laboratory of Processes Mechanization for Improving Pastures and Forage Conservation

Ruslan Iskakov, S. Seifullin Kazakh Agrotechnical University

PhD, Associate Professor

Department of Agrarian Technique and Technology

Daniyar Abilzhanov, Scientific Production Center of Agricultural Engineering, LTD

PhD, Leading Researcher

Orazakhin Darkhan, Scientific Production Center of Agricultural Engineering, LTD

Master of Industrial Training

Посилання

  1. Iskakov, R. M., Iskakova, A. M., Issenov, S. S., Beisebekova, D. M., Khaimuldinova, A. K. (2019). Technology of Multi-stage Sterilization of Raw Materials with the Production of Feed Meal of High Biological Value. Journal of Pure and Applied Microbiology, 13 (1), 307–312. doi: https://doi.org/10.22207/jpam.13.1.33
  2. Iskakov, R. M., Issenov, S. S., Iskakova, A. M., Halam, S., Beisebekova, D. M. (2015). Microbiological Appraisal of Feed Meal of Animal Origin, Produced by Drying and Grinding Installation. Journal of Pure and Applied Microbiology, 9 (1), 587–592.
  3. Zeng, Y., Forssberg, E. (1992). Effects of mill feed size and rod charges on grinding performance. Powder Technology, 69 (2), 119–123. doi: https://doi.org/10.1016/0032-5910(92)85064-3
  4. Chkalova, M., Pavlidis, V. (2021). Assessment of equipment efficiency in models of technological processes for production of combined feed. Engineering for Rural Development. doi: https://doi.org/10.22616/erdev.2021.20.tf193
  5. Leiva, A., Granados-Chinchilla, F., Redondo-Solano, M., Arrieta-González, M., Pineda-Salazar, E., Molina, A. (2018). Characterization of the animal by-product meal industry in Costa Rica: Manufacturing practices through the production chain and food safety. Poultry Science, 97 (6), 2159–2169. doi: https://doi.org/10.3382/ps/pey058
  6. Hesch, C., Weinberg, K. (2014). Thermodynamically consistent algorithms for a finite-deformation phase-field approach to fracture. International Journal for Numerical Methods in Engineering, 99 (12), 906–924. doi: https://doi.org/10.1002/nme.4709
  7. Lee, C. H., Gil, A. J., Ghavamian, A., Bonet, J. (2019). A Total Lagrangian upwind Smooth Particle Hydrodynamics algorithm for large strain explicit solid dynamics. Computer Methods in Applied Mechanics and Engineering, 344, 209–250. doi: https://doi.org/10.1016/j.cma.2018.09.033
  8. Bonet, J., Gil, A. J. (2021). Mathematical models of supersonic and intersonic crack propagation in linear elastodynamics. International Journal of Fracture, 229 (1), 55–75. doi: https://doi.org/10.1007/s10704-021-00541-y
  9. Markochev, V. M., Alymov, M. I. (2017). On the brittle fracture theory by Ya. Frenkel and A. Griffith. Chebyshevskii Sbornik, 18 (3), 381–393. doi: https://doi.org/10.22405/2226-8383-2017-18-3-381-393
  10. Zhou, Z.-G., Du, S.-Y., Wang, B. (2001). Investigation of Anti-plane Shear Behavior of a Griffith Crack in a Piezoelectric Material by Using the Non-local Theory. International Journal of Fracture, 111 (2), 105–117. doi: https://doi.org/10.1023/A:1012201923151
  11. Liu, B., Zhang, D. X., Zong, L. (2010). Investigation on the Motion States of the Hammers while Hammer Mill Steady Running by High-Speed Photography. Applied Mechanics and Materials, 42, 317–321. doi: https://doi.org/10.4028/www.scientific.net/amm.42.317
  12. Akbari, M. J., Kazemi, S. R. (2020). Peridynamic Analysis of Cracked Beam Under Impact. Journal of Mechanics, 36 (4), 451–463. doi: https://doi.org/10.1017/jmech.2020.12
  13. Tang, W. Y., He, Y. S., Zhang, S. K., Yuan, M. (2005). Dynamic Buckling of Cracked Beams Subject to Axial Impacting. 15th International Offshore and Polar Engineering Conference (ISOPE 2005). Seoul, 354–359. Available at: https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE05/All-ISOPE05/ISOPE-I-05-405/9537
  14. Georgiadis, H. G. (1987). Finite length crack moving in a viscoelastic strip under impact – I. Theory. Engineering Fracture Mechanics, 27 (5), 593–599. doi: https://doi.org/10.1016/0013-7944(87)90111-1
  15. Smits, M., Kronbergs, E. (2017). Determination Centre of Percussion for Hammer Mill Hammers. 16th International Scientific Conference Engineering for Rural Development. doi: http://dx.doi.org/10.22616/ERDev2017.16.N072
  16. Savinyh, P., Isupov, A., Ivanov, I., Ivanovs, S. (2021). Research in centrifugal rotary grinder of forage grain. Engineering for Rural Development. doi: https://doi.org/10.22616/erdev.2021.20.tf044
  17. Verma, H. R., Singh, K. K., Basha, S. M. (2018). Effect of Milling Parameters on the Concentration of Copper Content of Hammer-Milled Waste PCBs: A Case Study. Journal of Sustainable Metallurgy, 4 (2), 187–193. doi: https://doi.org/10.1007/s40831-018-0179-z
  18. Warzecha, M., Michalczyk, J. (2020). Calculation of maximal collision force in kinematic chains based on collision force impulse. Journal of Theoretical and Applied Mechanics, 58 (2), 339–349. doi: https://doi.org/10.15632/jtam-pl/116580
  19. Zhiltsov, A. P., Vlasenko, D. A., Levchenko, E. P. (2019). Research and Substantiation of Structural and Technological Parameters of the Process of Grinding Agglomeration Fluxes in a Hammer Mill. Chernye Metally, 10, 4–10.
  20. Munkhbayar, B., Bayaraa, N., Rehman, H., Kim, J., Chung, H., Jeong, H. (2012). Grinding characteristic of multi-walled carbon nanotubes-alumina composite particle. Journal of Wuhan University of Technology-Mater. Sci. Ed., 27 (6), 1009–1013. doi: https://doi.org/10.1007/s11595-012-0590-4
  21. Abilzhanuly, T. (2019). Method of Fineness Adjustment of Shredded Particles of Stem Fodder in Open-type Machines. EurAsian Journal of BioSciences, 13 (1), 625–631.
  22. Iskakov, R. М., Issenov, S. S., Iskakova, A. M., Halam, S., Beisebekova, D. M. (2013). Heat-and-Moisture Transfer at the Feed Meal Particles Drying and Grinding. Life Science Journal, 10 (12s), 497–502. Available at: http://www.lifesciencesite.com/lsj/life1012s/083_22175life1012s_497_502.pdf
  23. Issenov, S., Iskakov, R., Tergemes, K., Issenov, Z. (2022). Development of mathematical description of mechanical characteristics of integrated multi-motor electric drive for drying plant. Eastern-European Journal of Enterprise Technologies, 1 (8 (115)), 46–54. doi: https://doi.org/10.15587/1729-4061.2021.251232
  24. Iskakov, R. M., Iskakova, A. M., Nurushev, M. Z., Khaimuldinova, A. K., Karbayev, N. K. (2021). Method for the Production of Fat from Raw Materials and Animal Waste. Journal of Pure and Applied Microbiology, 15 (2), 716–724. doi: https://doi.org/10.22207/jpam.15.2.23
  25. Alpeissov, Y., Iskakov, R., Issenov, S., Ukenova, А. (2022). Obtaining a formula describing the interaction of fine particles with an expanding gas flow in a fluid layer. Eastern-European Journal of Enterprise Technologies, 2 (1 (116)), 87–97. doi: https://doi.org/10.15587/1729-4061.2022.255258
  26. Yang, J. H., Fang, H. Y., Luo, M. (2015). Load and wear experiments on the impact hammer of a vertical shaft impact crusher. IOP Conference Series: Materials Science and Engineering, 103, 012041. doi: https://doi.org/10.1088/1757-899x/103/1/012041
  27. Hong, S., Kim, S. (2017). Analysis of simulation result by digital filtering technique and improvement of hammer crusher. International Journal of Mineral Processing, 169, 168–175. doi: https://doi.org/10.1016/j.minpro.2017.11.004
  28. Kobrin, Y., Vlasov, A., Shevchenko, I. (2020). The effect of rotor balance during crushing of intermetallic compounds in hammer crushers. METAL Conference Proeedings. doi: https://doi.org/10.37904/metal.2020.3617
  29. Sauk, H., Selvi, K. C. (2018). Factors Affecting Energy Consumption in Hammer Mills. Scientific Papers - Series A, Agronomy, 61 (1), 392–396.
  30. Adigamov, N. R., Shaikhutdinov, R. R., Gimaltdinov, I. H., Akhmetzyanov, R. R., Basyrov, R. S. (2020). Determining the residual resource of the hammer crushers’ rotor bearings. BIO Web of Conferences, 17, 00239. doi: https://doi.org/10.1051/bioconf/20201700239
  31. Ulanov, I. A. (1976). Mashiny dlya izmel'cheniya kormov (teoriya i raschet). Saratov, 86.
  32. Globin, A. N. (2017). Modelirovaniye protsessa dozirovannoy vydachi izmel'chennykh stebel'nykh kormov. Vestnik agrarnoy nauki Dona, 1 (37), 5–15. Available at: https://cyberleninka.ru/article/n/modelirovanie-protsessa-dozirovannoy-vydachi-izmelchennyh-stebelnyh-kormov
Визначення середнього розміру попередньо подрібнених вологих частинок кормів у молоткових подрібнювачах

##submission.downloads##

Опубліковано

2023-02-25

Як цитувати

Abilzhanuly, T., Iskakov, R., Abilzhanov, D., & Darkhan, O. (2023). Визначення середнього розміру попередньо подрібнених вологих частинок кормів у молоткових подрібнювачах. Eastern-European Journal of Enterprise Technologies, 1(1 (121), 34–43. https://doi.org/10.15587/1729-4061.2023.268519

Номер

Розділ

Виробничо-технологічні системи