Відведення теплоти конденсації при спільній дії природної конвекції та радіаційного охолодження
DOI:
https://doi.org/10.15587/1729-4061.2023.273607Ключові слова:
радіаційне охолодження, холодильна машина, конденсатор, природна циркуляція повітря, енергоефективністьАнотація
У роботі досліджуються теплообмінні характеристики конденсатора, у якому відведення тепла конденсації холодоагенту проводиться за рахунок природної конвекції та радіаційного охолодження. Теплообмінник призначений для зниження витрат енергії на відведення теплоти конденсації. На відміну від традиційних конденсаторів повітряного охолодження, у ньому використовується радіаційне охолодження – спосіб відведення теплоти, заснований на її передачі у вигляді інфрачервоного випромінювання через атмосферу планети в навколишній космічний простір. Розроблено метод розрахунку товщини випромінюючої пластини. Для мінімізації матеріаломісткості та вартості міжтрубна відстань зменшена до 40 мм, а товщина випромінюючої пластини з алюмінію до 0.32 мм. Внутрішній діаметр каналів для холодоагенту дорівнює 1 мм.
Для експериментального дослідження конденсатора розроблено експериментальний стенд, що працює на холодоагенті R134a. Проведено теоретичні та експериментальні дослідження теплообміну. Коефіцієнт теплопередачі теплообмінника, наведений до площі випромінюючої поверхні, становив від 10.3±1.36 до 18.7±2.47 Вт·м–2·°C–1, коли температура конденсації була на 12.8…21.9 °С вище за температуру атмосферного повітря. Показано працездатність конденсатора як у денний, так і в нічний час, за наявності опадів у вигляді дощу та снігу, при високому рівні хмарності.
Матеріаломісткість та заправка холодоагенту в конденсатора зіставні з характеристиками конденсаторів повітряного охолодження з примусовою циркуляцією повітря. При цьому він не споживає електроенергії. Його можна використовувати в стаціонарних холодильних системах (у центрах обробки даних, торговому холодильному устаткуванні, кондиціонерах), для підвищення їхньої енергетичної ефективності
Посилання
- Dobson, R. (2005). Thermal modelling of a night sky radiation cooling system. Journal of Energy in Southern Africa, 16 (2), 20–31. doi: https://doi.org/10.17159/2413-3051/2005/v16i2a3184
- Meir, M. G., Rekstad, J. B., LØvvik, O. M. (2002). A study of a polymer-based radiative cooling system. Solar Energy, 73 (6), 403–417. doi: https://doi.org/10.1016/s0038-092x(03)00019-7
- Anderson, T., Duke, M., Carson, J. (2013). Performance of an unglazed solar collector for radiant cooling. Australian Solar Cooling 2013 Conference. Available at: https://openrepository.aut.ac.nz/handle/10292/5651?show=full
- Vidhi, R. (2018). A Review of Underground Soil and Night Sky as Passive Heat Sink: Design Configurations and Models. Energies, 11 (11), 2941. doi: https://doi.org/10.3390/en11112941
- Bagiorgas, H. S., Mihalakakou, G. (2008). Experimental and theoretical investigation of a nocturnal radiator for space cooling. Renewable Energy, 33 (6), 1220–1227. doi: https://doi.org/10.1016/j.renene.2007.04.015
- Hollick, J. (2012). Nocturnal Radiation Cooling Tests. Energy Procedia, 30, 930–936. doi: https://doi.org/10.1016/j.egypro.2012.11.105
- Tsoy, A. P., Baranenko, A. V., Granovsky, A. S., Tsoy, D. A., Dzhamasheva, R. A. (2020). Energy efficiency analysis of a combined cooling system with night radiative cooling. AIP Conference Proceedings. doi: https://doi.org/10.1063/5.0026908
- Karagusov, V. I., Serdyuk, V. S., Kolpakov, I. S., Nemykin, V. A., Pogulyaev, I. N. (2018). Experimental determination of rate and direction of heat flow of the radiation life – Support system with vacuum heat insulation. AIP Conference Proceedings. doi: https://doi.org/10.1063/1.5051876
- Goldstein, E. A., Raman, A. P., Fan, S. (2017). Sub-ambient non-evaporative fluid cooling with the sky. Nature Energy, 2 (9). doi: https://doi.org/10.1038/nenergy.2017.143
- Goldstein, E. A., Nasuta, D., Li, S., Martin, C., Raman, A. (2018). Free Subcooling with the Sky: Improving the efficiency of air conditioning systems. 17th International Refrigeration and Air Conditioning Conference at Purdue. Available at: https://docs.lib.purdue.edu/iracc/1913/
- Tsoy, A., Granovskiy, A., Tsoy, D., Koretskiy, D. (2022). Cooling capacity of experimental system with natural refrigerant circulation and condenser radiative cooling. Eastern-European Journal of Enterprise Technologies, 2 (8 (116)), 45–53. doi: https://doi.org/10.15587/1729-4061.2022.253651
- Ezekwe, C. I. (1990). Performance of a heat pipe assisted night sky radiative cooler. Energy Conversion and Management, 30 (4), 403–408. doi: https://doi.org/10.1016/0196-8904(90)90041-v
- Yu, C., Shen, D., Jiang, Q., He, W., Yu, H., Hu, Z. et al. (2019). Numerical and Experimental Study on the Heat Dissipation Performance of a Novel System. Energies, 13 (1), 106. doi: https://doi.org/10.3390/en13010106
- Kim, M.-H., Lee, S. Y., Mehendale, S. S., Webb, R. L. (2003). Microchannel Heat Exchanger Design for Evaporator and Condenser Applications. Advances in Heat Transfer, 297–429. doi: https://doi.org/10.1016/s0065-2717(03)37004-2
- Butrymowicz, D., Śmierciew, K., Gagan, J., Dudar, A., Łukaszuk, M., Zou, H., Łapiński, A. (2022). Investigations of Performance of Mini-Channel Condensers and Evaporators for Propane. Sustainability, 14 (21), 14249. doi: https://doi.org/10.3390/su142114249
- Boeng, J., Rametta, R. S., Melo, C., Hermes, C. J. L. (2020). Thermal-hydraulic characterization and system-level optimization of microchannel condensers for household refrigeration applications. Thermal Science and Engineering Progress, 20, 100479. doi: https://doi.org/10.1016/j.tsep.2020.100479
- Walton, G. (1983). Thermal Analysis Research Program. Washington, 292. Available at: https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/PB83194225.xhtml
- Samuel, D. G. L., Nagendra, S. M. S., Maiya, M. P. (2013). Passive alternatives to mechanical air conditioning of building: A review. Building and Environment, 66, 54–64. doi: https://doi.org/10.1016/j.buildenv.2013.04.016
- Zhao, D., Aili, A., Zhai, Y., Xu, S., Tan, G., Yin, X., Yang, R. (2019). Radiative sky cooling: Fundamental principles, materials, and applications. Applied Physics Reviews, 6 (2), 021306. doi: https://doi.org/10.1063/1.5087281
- Zhao, D., Aili, A., Zhai, Y., Lu, J., Kidd, D., Tan, G. et al. (2019). Subambient Cooling of Water: Toward Real-World Applications of Daytime Radiative Cooling. Joule, 3 (1), 111–123. doi: https://doi.org/10.1016/j.joule.2018.10.006
- Mukhachev, G. A., Schukin, V. K. (1991). Termodinamika i teploperedacha. Moscow: Vysshaya shkola.
- Bohdal, T., Charun, H., Sikora, M. (2012). Heat transfer during condensation of refrigerants in tubular minichannels. Archives of Thermodynamics, 33 (2), 3–22. doi: https://doi.org/10.2478/v10173-012-0008-x
- Isachenko, V. P., Osipova, V. A., Sukomel, A. (1975). Teploperedacha. Moscow: Energiya, 315.
- Tevar, J. A. F., Castaño, S., Marijuán, A. G., Heras, M. R., Pistono, J. (2015). Modelling and experimental analysis of three radioconvective panels for night cooling. Energy and Buildings, 107, 37–48. doi: https://doi.org/10.1016/j.enbuild.2015.07.027
- Bell, I. H., Wronski, J., Quoilin, S., Lemort, V. (2014). Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp. Industrial & Engineering Chemistry Research, 53 (6), 2498–2508. doi: https://doi.org/10.1021/ie4033999
- Orzechowski, T., Stokowiec, K. (2014). Free convection on a refrigerator’s condenser. EPJ Web of Conferences, 67, 02089. doi: https://doi.org/10.1051/epjconf/20146702089
- Saleh, A. A. M. (2019). Correlation of overall heat transfer coefficient in the three zones of wire and tube condenser. Journal of Mechanical Engineering Research and Developments, 42 (1), 96–103. doi: https://doi.org/10.26480/jmerd.01.2019.96.103
- Ahmad, M. I., Jarimi, H., Riffat, S. (2019). Nocturnal Cooling Technology for Building Applications. Springer, 70. https://doi.org/10.1007/978-981-13-5835-7
- Aili, A., Zhao, D., Lu, J., Zhai, Y., Yin, X., Tan, G., Yang, R. (2019). A kW-scale, 24-hour continuously operational, radiative sky cooling system: Experimental demonstration and predictive modeling. Energy Conversion and Management, 186, 586–596. doi: https://doi.org/10.1016/j.enconman.2019.03.006
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2023 Alexandr Tsoy, Alexandr Granovskiy, Baurzhan Nurakhmetov, Dmitriy Koretskiy, Diana Tsoy-Davis, Nikita Veselskiy
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.