Удосконалення методу лінійно-квадратичного керування фізичною моделлю судна з азимутальними підрулюючими пристроями

Автор(и)

  • Віталій Віталійович Будашко Національний університет «Одеська морська академія», Україна https://orcid.org/0000-0003-4873-5236
  • Альберт Кирилович Сандлер Національний університет «Одеська морська академія», Україна https://orcid.org/0000-0002-0709-0542
  • Сергій Георгійович Хнюнін Національний університет «Одеська морська академія», Україна https://orcid.org/0000-0001-5941-5372

DOI:

https://doi.org/10.15587/1729-4061.2023.273934

Ключові слова:

моделювання, підрулюючий пристрій, лінійно-квадратичний регулятор, оптимізація, комбінований пропульсивний комплекс, подвійне призначення

Анотація

Об’єктом дослідження є алгоритми керування масштабними моделями транспортних засобів морського базування (ТЗМБ). Предметом дослідження є лінійно-квадратичний метод керування моделлю пропульсивного комплексу з азимутальними підрулюючими пристроями (АПП) у кормовій частині. Проблема полягає у розв’язці між взаємозалежними кидками швидкостей повздовжнього руху, дрейфу та нишпорення, що прогнозуються лінійним контролером. Вхідними сигналами є швидкості обертання і кути упорів гвинтів АПП по відношенню до діаметральної площини ТЗМБ. Під час моделювання порівнюються ступінчасті відгуки замкнутої системи на перевантаження та швидкість повороту. Моделювання стрибків швидкості показало адекватну реакцію на відміну від частоти обертання АПП, яка виявила більший вплив на систему, ніж орієнтація АПП. При моделюванні швидкості нишпорення поведінка кута АПП не відповідала його обмеженням, властивим пристрою, що обертається з відповідною частотою. Робиться висновок, що це є результатом лінеаризації виконавчих механізмів, а запропоноване рішення полягає в тому, щоб реалізувати посилення завдання для кращого пристосування до обертової поведінки АПП. Незважаючи на ці проблеми, моделювання показало потенціал моделі та контролера для використання у подібних ситуаціях. Також пропонується кілька модифікацій для значного покращення моделі та симуляцій. Однією з основних змін, яку можна було б зробити, є реалізація прогнозуючого посилення при лінеаризації системи управління АПП. Практична значущість отриманих результатів полягає в тому, що модель квадратичної оптимізації є ефективною та надійною технікою в процесі проєктування ТЗМБ різноманітної конфігурації підрулюючих пристроїв для оптимального керування

Біографії авторів

Віталій Віталійович Будашко, Національний університет «Одеська морська академія»

Доктор технічних наук, професор

Навчально-науковий інститут автоматики та електромеханіки

Альберт Кирилович Сандлер, Національний університет «Одеська морська академія»

Кандидат технічних наук, доцент

Навчально-науковий інститут автоматики та електромеханіки

Сергій Георгійович Хнюнін, Національний університет «Одеська морська академія»

Кандидат технічних наук, доцент

Навчально-науковий інститут автоматики та електромеханіки

Посилання

  1. Budashko, V. (2017). Formalization of design for physical model of the azimuth thruster with two degrees of freedom by computational fluid dynamics methods. Eastern-European Journal of Enterprise Technologies, 3 (7 (87)), 40–49. doi: https://doi.org/10.15587/1729-4061.2017.101298
  2. Budashko, V., Golikov, V. (2017). Theoretical-applied aspects of the composition of regression models for combined propulsion complexes based on data of experimental research. Eastern-European Journal of Enterprise Technologies, 4 (3 (88)), 11–20. doi: https://doi.org/10.15587/1729-4061.2017.107244
  3. Vitalii, B., Vitalii, N., Mark, N., Sergii, K. (2018). Parametrization and identification of energy flows in the ship propulsion complex. 2018 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET). doi: https://doi.org/10.1109/tcset.2018.8336205
  4. Budashko, V. V. (2017). Design of the three-level multicriterial strategy of hybrid marine power plant control for a combined propulsion complex. Electrical Engineering & Electromechanics, 2, 62–72. doi: https://doi.org/10.20998/2074-272x.2017.2.10
  5. Budashko, V., Nikolskyi, V., Onishchenko, O., Khniunin, S. (2016). Decision support system’s concept for design of combined propulsion complexes. Eastern-European Journal of Enterprise Technologies, 3 (8 (81)), 10–21. doi: https://doi.org/10.15587/1729-4061.2016.72543
  6. Chen, T.-Y. (2013). An interval-valued intuitionistic fuzzy LINMAP method with inclusion comparison possibilities and hybrid averaging operations for multiple criteria group decision making. Knowledge-Based Systems, 45, 134–146. doi: https://doi.org/10.1016/j.knosys.2013.02.012
  7. Fossen, T. I., Sagatun, S. I., Sørensen, A. J. (1996). Identification of dynamically positioned ships. Control Engineering Practice, 4 (3), 369–376. doi: https://doi.org/10.1016/0967-0661(96)00014-7
  8. Liang, C. C., Cheng, W. H. (2004). The optimum control of thruster system for dynamically positioned vessels. Ocean Engineering, 31 (1), 97–110. doi: https://doi.org/10.1016/s0029-8018(03)00016-7
  9. Uyar, E., Alpkaya, A. T., Mutlu, L. (2016). Dynamic Modelling, Investigation of Manoeuvring Capability and Navigation Control of a Cargo Ship by using Matlab Simulation. IFAC-PapersOnLine, 49 (3), 104–110. doi: https://doi.org/10.1016/j.ifacol.2016.07.018
  10. Naeem, W., Sutton, R., Ahmad, S. M. (2003). LQG/LTR Control of an Autonomous Underwater Vehicle Using a Hybrid Guidance Law. IFAC Proceedings Volumes, 36 (4), 31–36. doi: https://doi.org/10.1016/s1474-6670(17)36653-3
  11. Skjetne, R., Fossen, T. I., Kokotović, P. V. (2005). Adaptive maneuvering, with experiments, for a model ship in a marine control laboratory. Automatica, 41 (2), 289–298. doi: https://doi.org/10.1016/j.automatica.2004.10.006
  12. Ljungberg, F. (2020). Estimation of Nonlinear Greybox Models for Marine Applications. Linköping Studies in Science and Technology. Linköping. doi: https://doi.org/10.3384/lic.diva-165828
  13. Lang, X., Mao, W. (2020). A semi-empirical model for ship speed loss prediction at head sea and its validation by full-scale measurements. Ocean Engineering, 209, 107494. doi: https://doi.org/10.1016/j.oceaneng.2020.107494
  14. Aurlien, A., Breivik, M., Eriksen, B.-O. H. (2021). Multivariate Modeling and Adaptive Control of Autonomous Ferries. IFAC-PapersOnLine, 54 (16), 395–401. doi: https://doi.org/10.1016/j.ifacol.2021.10.122
  15. Sukkarieh, S., Nebot, E. M., Durrant-Whyte, H. F. (1999). A high integrity IMU/GPS navigation loop for autonomous land vehicle applications. IEEE Transactions on Robotics and Automation, 15 (3), 572–578. doi: https://doi.org/10.1109/70.768189
  16. Wang, Z., Montanaro, U., Fallah, S., Sorniotti, A., Lenzo, B. (2018). A gain scheduled robust linear quadratic regulator for vehicle direct yaw moment Control. Mechatronics, 51, 31–45. doi: https://doi.org/10.1016/j.mechatronics.2018.01.013
  17. Sandler, A., Budashko, V. (2022). Improving tools for diagnosing technical condition of ship electric power installations. Eastern-European Journal of Enterprise Technologies, 5 (5 (119)), 25–33. doi: https://doi.org/10.15587/1729-4061.2022.266267
  18. Caron, F., Duflos, E., Pomorski, D., Vanheeghe, P. (2006). GPS/IMU data fusion using multisensor Kalman filtering: introduction of contextual aspects. Information Fusion, 7 (2), 221–230. doi: https://doi.org/10.1016/j.inffus.2004.07.002
  19. Ccolque-Churquipa, A., Cutipa-Luque, J. C., Aco-Cardenas, D. Y. (2018). Implementation of a Measurement System for the Attitude, Heading and Position of a USV Using IMUs and GPS. 2018 IEEE ANDESCON. doi: https://doi.org/10.1109/andescon.2018.8564668
  20. Chrif, L., Kadda, Z. M. (2014). Aircraft Control System Using LQG and LQR Controller with Optimal Estimation-Kalman Filter Design. Procedia Engineering, 80, 245–257. doi: https://doi.org/10.1016/j.proeng.2014.09.084
  21. Budashko, V. V. (2016). Increasing control’s efficiency for the ship’s two-mass electric drive. Electrical Engineering & Electromechanics, 4, 34–42. doi: https://doi.org/10.20998/2074-272x.2016.4.05
  22. Gibson, J. D. (2003). Performance effects of optimal LQG eigenvalue placement in ship control. IECON’03. 29th Annual Conference of the IEEE Industrial Electronics Society (IEEE Cat. No.03CH37468). doi: https://doi.org/10.1109/iecon.2003.1279991
  23. Jerrelind E. (2021). Linear Quadratic Control of a Marine Vehicle with Azimuth Propulsion, Internet, Dissertation. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-178007
  24. Sir Elkhatem, A., Naci Engin, S. (2022). Robust LQR and LQR-PI control strategies based on adaptive weighting matrix selection for a UAV position and attitude tracking control. Alexandria Engineering Journal, 61 (8), 6275–6292. doi: https://doi.org/10.1016/j.aej.2021.11.057
  25. Gandhi, P., Adarsh, S., Ramachandran, K. I. (2017). Performance Analysis of Half Car Suspension Model with 4 DOF using PID, LQR, FUZZY and ANFIS Controllers. Procedia Computer Science, 115, 2–13. doi: https://doi.org/10.1016/j.procs.2017.09.070
  26. Linder, J. (2014). Graybox Modelling of Ships Using Indirect Input Measurements. Linköping. doi: https://doi.org/10.3384/lic.diva-111095
  27. Oosterveld, M. W. C., van Oossanen, P. (1975). Further computer-analyzed data of the Wageningen B-screw series. International Shipbuilding Progress, 22 (251), 251–262. doi: https://doi.org/10.3233/isp-1975-2225102
  28. Sáez, D., Cipriano, A. (1998). Fuzzy Linear Quadratic Regulator Applied to the Real Time Control of an Inverted Pendulum. IFAC Proceedings Volumes, 31 (4), 155–160. doi: https://doi.org/10.1016/s1474-6670(17)42150-1
  29. Sørensen, A. J., Ådnanes, A. (1997). High Performance Thrust Allocation Scheme in Positioning of Ships Based on Power and Torque Control. Marine Technology Society. Available at: https://www.researchgate.net/publication/255649795_High_Performance_Thrust_Allocation_Scheme_in_Positioning_of_Ships_Based_on_Power_and_Torque_Control
  30. Myrhorod, V., Hvozdeva, I., Budashko, V. (2020). Multi-parameter Diagnostic Model of the Technical Conditions Changes of Ship Diesel Generator Sets. 2020 IEEE Problems of Automated Electrodrive. Theory and Practice (PAEP). doi: https://doi.org/10.1109/paep49887.2020.9240905
  31. Budashko, V., Shevchenko, V. (2021). The synthesis of control system to synchronize ship generator assemblies. Eastern-European Journal of Enterprise Technologies, 1 (2 (109)), 45–63. doi: https://doi.org/10.15587/1729-4061.2021.225517
  32. Zanchetta, M., Tavernini, D., Sorniotti, A., Gruber, P., Lenzo, B., Ferrara, A. et al. (2019). Trailer control through vehicle yaw moment control: Theoretical analysis and experimental assessment. Mechatronics, 64, 102282. doi: https://doi.org/10.1016/j.mechatronics.2019.102282
  33. Budashko, V., Shevchenko, V. (2018). Synthesis of the Management Strategy of the Ship Power Plant for the Combined Propulsion Complex. 2018 IEEE 5th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC). doi: https://doi.org/10.1109/msnmc.2018.8576266
  34. Hvozdeva, I., Myrhorod, V., Budashko, V., Shevchenko, V. (2020). Problems of Improving the Diagnostic Systems of Marine Diesel Generator Sets. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). doi: https://doi.org/10.1109/tcset49122.2020.235453
  35. Budashko, V. (2020). Thrusters Physical Model Formalization with regard to Situational and Identification Factors of Motion Modes. 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE). doi: https://doi.org/10.1109/icecce49384.2020.9179301
  36. Wu, T.-S., Karkoub, M., Yu, W.-S., Chen, C.-T., Her, M.-G., Wu, K.-W. (2016). Anti-sway tracking control of tower cranes with delayed uncertainty using a robust adaptive fuzzy control. Fuzzy Sets and Systems, 290, 118–137. doi: https://doi.org/10.1016/j.fss.2015.01.010
  37. Sandler, A. K., Budashko, V. V. (2022). Volokonno-optychnyi inklinometr dlia diahnostuvannia elementiv sudnovoho propulsyvnoho kompleksu. XI naukova konferentsiya «Naukovi pidsumky 2022 roku». Kharkiv: Tekhnolohichnyi tsentr, 43–44. Available at: https://entc.com.ua/download/Збірник%20тез_11_Наукової%20конференції_НАУКОВІ%20ПІДСУМКИ%202022%20РОКУ_.pdf
  38. Budashko, V., Shevchenko, V. (2021). Solving a task of coordinated control over a ship automated electric power system under a changing load. Eastern-European Journal of Enterprise Technologies, 2 (2 (110)), 54–70. doi: https://doi.org/10.15587/1729-4061.2021.229033
  39. Budashko, V., Sandler, A., Shevchenko, V. (2022). Optimization of the control system for an electric power system operating on a constant-power hyperbole. Eastern-European Journal of Enterprise Technologies, 1 (8 (115)), 6–17. doi: https://doi.org/10.15587/1729-4061.2022.252172
  40. Budashko, V., Sandler, A., Shevchenko, V. (2022). Diagnosis of the Technical Condition of High-tech Complexes by Probabilistic Methods. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 16 (1), 105–111. doi: https://doi.org/10.12716/1001.16.01.11
  41. Myrhorod, V., Gvozdeva, I., Budashko, V. (2022). Approximation - markov models of changes in the technical condition parameters of power and energy installations in long-term operation. Aerospace Technic and Technology, 4sup2, 73–79. doi: https://doi.org/10.32620/aktt.2022.4sup2.11
  42. Hvozdeva, I. M., Myrhorod, V. F., Budasko, V. V. (2021). Two-dimensional singular decomposition of time series components. Applied Questions of Mathematical Modeling, 4, 66–75. doi: https://doi.org/10.32782/kntu2618-0340/2021.4.2.1.6
Удосконалення методу лінійно-квадратичного керування фізичною моделлю судна з азимутальними підрулюючими пристроями

##submission.downloads##

Опубліковано

2023-02-28

Як цитувати

Будашко, В. В., Сандлер, А. К., & Хнюнін, С. Г. (2023). Удосконалення методу лінійно-квадратичного керування фізичною моделлю судна з азимутальними підрулюючими пристроями. Eastern-European Journal of Enterprise Technologies, 1(2 (121), 49–71. https://doi.org/10.15587/1729-4061.2023.273934