Вплив підлужування та етерифікаційної обробки на механічні властивості композиту епоксидної смоли, армованої волокнами водяного гіацинту

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2023.274064

Ключові слова:

композит, натуральне волокно, епоксидна смола, водний гіацинт, алкалізація, етерифікація, міцність на розрив

Анотація

У цьому дослідженні досліджується вплив попередньої обробки волокна на механічні та фізичні властивості односпрямованих композитів на основі епоксидної смоли, армованих волокном водяного гіацинта (ВГ). Волокна водяного гіацинта отримані шляхом механічної обробки. Стебла ВГ довжиною 50–70 см розчісують залізною щіткою, щоб механічно витягнути пасма. Потім сухі волокна попередньо обробляли шляхом підлужнення та етерифікації. Підлужнення проводили шляхом занурення волокон у 2 %, 5 % та 10 % розчин NaOH на 24 години. Етерифікацію волокон ВГ проводили з використанням ацетатного ангідриду. Композит з 15 %, 25 % і 35 % односпрямованих волокон ВГ виготовлявся ручним накладанням. Після ручного укладання композити оброблялись ВГ, потім ущільнювались під тиском 5 МПа. Випробування на розтяг проводилося згідно з ASTM D3039. Щільність композитів перевіряли за правилом Архімеда. Поверхневі забруднення були усунені шляхом обробки волокон. Обробка NaOH усунула поверхневий віск і кутикулу. Поверхня волокон, оброблених 10 % NaOH, була чистішою, ніж оброблена 5 % NaOH. Обробка волокна має ефект зменшення товщини волокна. Результати випробування на розтягування композиту, армованого волокном ВГ з обробкою NaOH і ацетатним ангідридом, показують, що міцність на розрив необроблених композитів на основі епоксидної смоли, армованих волокном ВГ, зростала зі збільшенням % волокна ВГ. Результати міцності на розрив, отримані при обробці ангідридом ацетату композитів на основі епоксидної смоли, армованих волокном ВГ, показали, що збільшення волокна ВГ підвищує міцність на розрив композиту. Найвища міцність на розрив епоксидної смоли, армованої волокном ВГ з обробкою ацетатним ангідридом

Біографії авторів

Sulardjaka Sulardjaka, Diponegoro University

Doctor of Engineering

Department of Mechanical Engineering

Norman Iskandar, Diponegoro University

Master of Engineering

Department of Mechanical Engineering

Parlindungan Manik, Diponegoro University

Doctor of Engineering

Department of Naval Architectur Engineering

Dwi Satrio Nurseto, Diponegoro University

Bachelor of Engineering

Department of Mechanical Engineering

Посилання

  1. Sindhu, R., Binod, P., Pandey, A., Madhavan, A., Alphonsa, J. A., Vivek, N. et al. (2017). Water hyacinth a potential source for value addition: An overview. Bioresource Technology, 230, 152–162. doi: https://doi.org/10.1016/j.biortech.2017.01.035
  2. Hidayati, N., Soeprobowati, T. R., Helmi, M. (2018). The evaluation of water hyacinth (Eichhornia crassiper) control program in Rawapening Lake, Central Java Indonesia. IOP Conference Series: Earth and Environmental Science, 142, 012016. doi: https://doi.org/10.1088/1755-1315/142/1/012016
  3. Teygeler, R. (2000). Water hyacinth paper. Contribution to a sustainable future. Paper and Water, 168–188. Available at: https://www.researchgate.net/profile/Rene-Teijgeler/publication/323226395_Waterhyacintpapier_Bijdrage_aan_een_duurzame_toekomst_Water_hyacinth_paper_Contribution_to_a_sustainable_future_bi-lingual/links/5a870a64aca272017e5aad54/Waterhyacintpapier-Bijdrage-aan-een-duurzame-toekomst-Water-hyacinth-paper-Contribution-to-a-sustainable-future-bi-lingual.pdf
  4. Choudhary, A. K., Chelladurai, H., Kannan, C. (2015). Optimization of Combustion Performance of Bioethanol (Water Hyacinth) Diesel Blends on Diesel Engine Using Response Surface Methodology. Arabian Journal for Science and Engineering, 40 (12), 3675–3695. doi: https://doi.org/10.1007/s13369-015-1810-y
  5. Gao, J., Chen, L., Yan, Z., Wang, L. (2013). Effect of ionic liquid pretreatment on the composition, structure and biogas production of water hyacinth (Eichhornia crassipes). Bioresource Technology, 132, 361–364. doi: https://doi.org/10.1016/j.biortech.2012.10.136
  6. Gupta, A., Balomajumder, C. (2015). Removal of Cr(VI) and phenol using water hyacinth from single and binary solution in the artificial photosynthesis chamber. Journal of Water Process Engineering, 7, 74–82. doi: https://doi.org/10.1016/j.jwpe.2015.05.008
  7. Rani, S., Sumanjit, Mahajan, R. K. (2015). Comparative study of surface modified carbonizedEichhornia crassipesfor adsorption of dye safranin. Separation Science and Technology, 150629133342008. doi: https://doi.org/10.1080/01496395.2015.1061003
  8. Romanova, T. E., Shuvaeva, O. V., Belchenko, L. A. (2015). Phytoextraction of trace elements by water hyacinth in contaminated area of gold mine tailing. International Journal of Phytoremediation, 18 (2), 190–194. doi: https://doi.org/10.1080/15226514.2015.1073674
  9. Pickering, K. L., Efendy, M. G. A., Le, T. M. (2016). A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing, 83, 98–112. doi: https://doi.org/10.1016/j.compositesa.2015.08.038
  10. Bordoloi, S., Kashyap, V., Garg, A., Sreedeep, S., Wei, L., Andriyas, S. (2018). Measurement of mechanical characteristics of fiber from a novel invasive weed: A comprehensive comparison with fibers from agricultural crops. Measurement, 113, 62–70. doi: https://doi.org/10.1016/j.measurement.2017.08.044
  11. Tumolva, T., Ortenero, J., Kubouchi, M. (2013). Characterization and treatment of water hyacinth fibers for NFRP composites. The 19th International Conference on Composite Materials. Montreal.
  12. Bhuvaneshwari, M., Sangeetha, K. (2017). Development of Water Hyacinth nonwoven fabrics for thermal insulation. Journal on Future Engineering & Technology, 13 (1), 22. doi: https://doi.org/10.26634/jfet.13.1.13759
  13. Jha, K., Kataria, R., Verma, J., Pradhan, S. (2019). Potential biodegradable matrices and fiber treatment for green composites: A review. AIMS Materials Science, 6 (1), 119–138. doi: https://doi.org/10.3934/matersci.2019.1.119
  14. Rangappa, S. M., Siengchin, S. (2018). Natural Fibers as Perspective Materials. KMUTNB International Journal of Applied Science and Technology, 11 (4). doi: https://doi.org/10.14416/j.ijast.2018.09.001
  15. Jawaid, M., Abdul Khalil, H. P. S. (2011). Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydrate Polymers, 86 (1), 1–18. doi: https://doi.org/10.1016/j.carbpol.2011.04.043
  16. Faruk, O., Bledzki, A. K., Fink, H.-P., Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 37 (11), 1552–1596. doi: https://doi.org/10.1016/j.progpolymsci.2012.04.003
  17. Sanjay, M. R., Siengchin, S., Parameswaranpillai, J., Jawaid, M., Pruncu, C. I., Khan, A. (2019). A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization. Carbohydrate Polymers, 207, 108–121. doi: https://doi.org/10.1016/j.carbpol.2018.11.083
  18. Valadez-Gonzalez, A., Cervantes-Uc, J. M., Olayo, R., Herrera-Franco, P. J. (1999). Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Composites Part B: Engineering, 30 (3), 309–320. doi: https://doi.org/10.1016/s1359-8368(98)00054-7
  19. Chonsakorn, S., Srivorradatpaisan, S., Mongkholrattanasit, R. (2018). Effects of different extraction methods on some properties of water hyacinth fiber. Journal of Natural Fibers, 16 (7), 1015–1025. doi: https://doi.org/10.1080/15440478.2018.1448316
  20. Kabir, M. M., Wang, H., Lau, K. T., Cardona, F. (2012). Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering, 43 (7), 2883–2892. doi: https://doi.org/10.1016/j.compositesb.2012.04.053
  21. Sapci, Z. (2013). The effect of microwave pretreatment on biogas production from agricultural straws. Bioresource Technology, 128, 487–494. doi: https://doi.org/10.1016/j.biortech.2012.09.094
  22. Sood, M., Dwivedi, G. (2018). Effect of fiber treatment on flexural properties of natural fiber reinforced composites: A review. Egyptian Journal of Petroleum, 27 (4), 775–783. doi: https://doi.org/10.1016/j.ejpe.2017.11.005
  23. Suarsana, I., Suryawan, I., Suardana, N., Winaya, S., Soenoko, R., Suyasa, B. et al. (2021). Flexural strength of hybrid composite resin epoxy reinforced stinging nettle fiber with silane chemical treatment. AIMS Materials Science, 8 (2), 185–199. doi: https://doi.org/10.3934/matersci.2021013
  24. Supri, A. G., Ismail, H. (2011). The Effect of Isophorone Diisocyanate-Polyhydroxyl Groups Modified Water Hyacinth Fibers (Eichhornia Crassiper) on Properties of Low Density Polyethylene/Acrylonitrile Butadiene Styrene (LDPE/ABS) Composites. Polymer-Plastics Technology and Engineering, 50 (2), 113–120. doi: https://doi.org/10.1080/03602559.2010.531428
  25. Thiripura Sundari, M., Ramesh, A. (2012). Isolation and characterization of cellulose nanofibers from the aquatic weed water hyacinth – Eichhornia crassipes. Carbohydrate Polymers, 87 (2), 1701–1705. doi: https://doi.org/10.1016/j.carbpol.2011.09.076
  26. Saputra, A. H., Difandra, A., Pitaloka, A. B. (2013). The Effect of Surface Treatment on Composites of Water Hyacinth Natural Fiber Reinforced Epoxy Resin. Advanced Materials Research, 651, 480–485. doi: https://doi.org/10.4028/www.scientific.net/amr.651.480
  27. Aleño, J. B., Ramos, H. J., Jose, W. I. (2014). Determination of Properties of yarns made from Water Hyacinth and pinneapple indigenous fibers treated using plasma enhaced chemical vapour deposition. 5th International Conference on Chemical, Ecology and Environmental Sciences (ICCEES'2014). Penang.
  28. Thi, B. T. N., Thanh, L. H. V., Lan, T. N. P., Thuy, N. T. D., Ju, Y.-H. (2017). Comparison of Some Pretreatment Methods on Cellulose Recovery from Water Hyacinth (Eichhornia Crassipe). Journal of Clean Energy Technologies, 5 (4), 274–279. doi: https://doi.org/10.18178/jocet.2017.5.4.382
  29. Asrofi, M., Abral, H., Kasim, A., Pratoto, A., Mahardika, M., Hafizulhaq, F. (2018). Mechanical Properties of a Water Hyacinth Nanofiber Cellulose Reinforced Thermoplastic Starch Bionanocomposite: Effect of Ultrasonic Vibration during Processing. Fibers, 6 (2), 40. doi: https://doi.org/10.3390/fib6020040
  30. Abdel-Fattah, A. F., Abdel-Naby, M. A. (2012). Pretreatment and enzymic saccharification of water hyacinth cellulose. Carbohydrate Polymers, 87 (3), 2109–2113. doi: https://doi.org/10.1016/j.carbpol.2011.10.033
  31. Sivasankari, B., David Ravindran, A. (2016). A Study on Chemical Analysis of Water Hyacinth (Eichornia crassipes), Water Lettuce (Pistia stratiotes). International Journal of Innovative Research in Science, Engineering and Technology, 5 (10), 17566–17570. doi: https://doi.org/10.15680/ijirset.2016.0510010
  32. Manimaran, P., Senthamaraikannan, P., Murugananthan, K., Sanjay, M. R. (2017). Physicochemical Properties of New Cellulosic Fibers from Azadirachta indica Plant. Journal of Natural Fibers, 15 (1), 29–38. doi: https://doi.org/10.1080/15440478.2017.1302388
  33. Ribeiro, A., Pochart, P., Day, A., Mennuni, S., Bono, P., Baret, J.-L. et al. (2015). Microbial diversity observed during hemp retting. Applied Microbiology and Biotechnology, 99 (10), 4471–4484. doi: https://doi.org/10.1007/s00253-014-6356-5
  34. Khankham, P., Nhuapeng, W., Thamjaree, W. (2017). Fabrication and Mechanical Properties of the Biocomposites between Water Hyacinth Fiber and Paper Mulberry. Key Engineering Materials, 757, 73–77. doi: https://doi.org/10.4028/www.scientific.net/kem.757.73
  35. Salas-Ruiz, A., Barbero-Barrera, M. del M. (2019). Performance assessment of water hyacinth–cement composite. Construction and Building Materials, 211, 395–407. doi: https://doi.org/10.1016/j.conbuildmat.2019.03.217
  36. Abral, H., Kadriadi, D., Rodianus, A., Mastariyanto, P., Ilhamdi, Arief, S. et al. (2014). Mechanical properties of water hyacinth fibers – polyester composites before and after immersion in water. Materials & Design, 58, 125–129. doi: https://doi.org/10.1016/j.matdes.2014.01.043
  37. Huda, N. N., Nath, P., Al Amin, M., Rafiquzzaman, M. (2017). Charpy Impact Behavior of Water Hyacinth Fiber Based Polymer Composite. Journal of Material Science & Manufacturing Technology, 2 (2). Available at: https://www.kuet.ac.bd/webportal/ppmv2/uploads/1509249811Paper-Water%20Hyacinth.pdf
  38. Supri, A. G., Lim, B. Y. (2009). Effect of Treated and Untreated Filler Loading on the Mechanical, Morphological, and Water Absorption Properties of Water Hyacinth Fibers-Low Density Polyethylene Composites. Journal of Physical Science, 20 (2), 85–96. Available at: http://web.usm.my/jps/20-2-09/JPS%2020_2_%20ART%207%20_85-96_.pdf
  39. Dantas, L. G., Motta, L. A. de C., Pasquini, D., Vieira, J. G. (2019). Surface Esterification of Sisal Fibres for use as Reinforcement in Cementitious Matrix. Materials Research, 22 (4). doi: https://doi.org/10.1590/1980-5373-mr-2018-0585
  40. Sulardjaka, S., Iskandar, N., Nugroho, S., Alamsyah, A., Prasetya, M. Y. (2022). The characterization of unidirectional and woven water hyacinth fiber reinforced with epoxy resin composites. Heliyon, 8 (9), e10484. doi: https://doi.org/10.1016/j.heliyon.2022.e10484
  41. Ajithram, A., Winowlin Jappes, J. T., Siva, I., Brintha, N. C. (2022). Utilizing the aquatic waste and investigation on water hyacinth (Eichhornia crassipes) natural plant in to the fibre composite: Waste recycling. Materials Today: Proceedings, 58, 953–958. doi: https://doi.org/10.1016/j.matpr.2022.02.301
Вплив підлужування та етерифікаційної обробки на механічні властивості композиту епоксидної смоли, армованої волокнами водяного гіацинту

##submission.downloads##

Опубліковано

2023-02-24

Як цитувати

Sulardjaka, S., Iskandar, N., Manik, P., & Nurseto, D. S. (2023). Вплив підлужування та етерифікаційної обробки на механічні властивості композиту епоксидної смоли, армованої волокнами водяного гіацинту. Eastern-European Journal of Enterprise Technologies, 1(12 (121), 26–33. https://doi.org/10.15587/1729-4061.2023.274064

Номер

Розділ

Матеріалознавство