Розробка виявлення об'єктів з хмар точок тривимірного набору даних за допомогою нейронної мережі Point-Pillars

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2023.275155

Ключові слова:

виявлення об'єктів, хмари точок, point-pillars, згорткова нейронна мережа з глибоким навчанням

Анотація

Алгоритми глибокого навчання дозволяють автоматично обробляти хмари точок у широкому діапазоні реалізацій тривимірної візуалізації. Вони застосовуються в сучасних системах допомоги водієві, в області сприйняття та навігації роботів, класифікації сцен, спостереження, стереобачення та оцінки глибини. Згідно з попередніми дослідженнями, виявлення об'єктів з хмар точок тривимірного набору даних з прийнятною точністю все ще є складним завданням. У роботі використовується метод Point-Pillars для виявлення тривимірного об'єкта з використанням шарів двовимірної згорткової нейронної мережі (CNN). Архітектура Point-Pillars включає навчальний кодувальник для використання Point-Nets для навчання демонстрації хмар точок, структурованих вертикальними стовпцями (pillars). Архітектура Point-Pillars використовує двовимірну CNN для декодування прогнозів, створення оцінок мережі та тривимірних оболонок для позначення різних об'єктів, таких як пішоходи, вантажівки та легкові автомобілі. Метою даного дослідження є виявлення об'єктів із хмар точок тривимірного набору даних за допомогою архітектури нейронної мережі Point-Pillars, що дозволяє виявляти тривимірний об'єкт за допомогою шарів двовимірної згорткової нейронної мережі (CNN). Даний метод включає в себе отримання розрідженого псевдозображення з хмари точок за допомогою кодувальника ознак, використання магістралі двовимірної згортки для обробки псевдозображення у високорівневе та використання детекторних головок для регресії і виявлення тривимірних обмежуючих рамок. У роботі використовується доповнення до даних підсупутникових спостережень, а також додаткові доповнення до глобальних методів збору даних для включення подальшої різноманітності в пакети даних навчання та ідентифікації. Отримані результати показали, що середня подібність орієнтації (AOS) та середня точність (AP) склали 0,60989, 0,61157 для вантажних автомобілів та 0,74377, 0,75569 для легкових автомобілів.

Спонсор дослідження

  • The authors would like to express their deepest gratitude to the Northern Technical University, Mosul- Iraq for their support to complete this research.

Біографії авторів

Omar I. Dallal Bashi, Northern Technical University

Doctor of Robotics and Automation Engineering

Department of Computer Engineering

Husamuldeen K. Hameed, Higher Institute of Telecommunications and Postal

Doctor of Electronic Engineering

Department of Telecommunications and Information

Yasir Mahmood Al Kubaiaisi, Dubai Academic Health Corporation

Doctor of Electrical and Control Engineering

Department of Sustainability Management

Ahmad H. Sabry, Al-Nahrain University

Doctor of Control and Automation Engineering

Department of Computer Engineering

Посилання

  1. Geiger, A., Lenz, P., Urtasun, R. (2012). Are we ready for autonomous driving? The KITTI vision benchmark suite. 2012 IEEE Conference on Computer Vision and Pattern Recognition. doi: https://doi.org/10.1109/cvpr.2012.6248074
  2. Fuseya, Y., Kariyado, T., Ogata, M. (2009). Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite Andreas. Journal of the Physical Society of Japan.
  3. Song, X., Wang, P., Zhou, D., Zhu, R., Guan, C., Dai, Y. et al. (2019). ApolloCar3D: A Large 3D Car Instance Understanding Benchmark for Autonomous Driving. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). doi: https://doi.org/10.1109/cvpr.2019.00560
  4. Liu, H., Guo, Y., Ma, Y., Lei, Y., Wen, G. (2021). Semantic Context Encoding for Accurate 3D Point Cloud Segmentation. IEEE Transactions on Multimedia, 23, 2045–2055. doi: https://doi.org/10.1109/tmm.2020.3007331
  5. Dai, A., Chang, A. X., Savva, M., Halber, M., Funkhouser, T., Niessner, M. (2017). ScanNet: Richly-Annotated 3D Reconstructions of Indoor Scenes. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi: https://doi.org/10.1109/cvpr.2017.261
  6. Rossi, D., Veglia, P., Sammarco, M., Larroca, F. (2012). ModelNet-TE: An emulation tool for the study of P2P and traffic engineering interaction dynamics. Peer-to-Peer Networking and Applications, 6 (2), 194–212. doi: https://doi.org/10.1007/s12083-012-0134-x
  7. Sabry, A. H., Nordin, F. H., Sabry, A. H., Abidin Ab Kadir, M. Z. (2020). Fault Detection and Diagnosis of Industrial Robot Based on Power Consumption Modeling. IEEE Transactions on Industrial Electronics, 67 (9), 7929–7940. doi: https://doi.org/10.1109/tie.2019.2931511
  8. Nazir, D., Afzal, M. Z., Pagani, A., Liwicki, M., Stricker, D. (2021). Contrastive Learning for 3D Point Clouds Classification and Shape Completion. Sensors, 21 (21), 7392. doi: https://doi.org/10.3390/s21217392
  9. Hamza, E., Aziez, S., Hummadi, F., Sabry, A. (2022). Classifying wireless signal modulation sorting using convolutional neural network. Eastern-European Journal of Enterprise Technologies, 6 (9 (120)), 70–79. doi: https://doi.org/10.15587/1729-4061.2022.266801
  10. Fernandes, D., Silva, A., Névoa, R., Simões, C., Gonzalez, D., Guevara, M. et al. (2021). Point-cloud based 3D object detection and classification methods for self-driving applications: A survey and taxonomy. Information Fusion, 68, 161–191. doi: https://doi.org/10.1016/j.inffus.2020.11.002
  11. Zhou, Z., Gong, J. (2018). Automated residential building detection from airborne LiDAR data with deep neural networks. Advanced Engineering Informatics, 36, 229–241. doi: https://doi.org/10.1016/j.aei.2018.04.002
  12. Qing, L., Yang, K., Tan, W., Li, J. (2020). Automated Detection of Manhole Covers in MLS Point Clouds Using a Deep Learning Approach. IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. doi: https://doi.org/10.1109/igarss39084.2020.9324137
  13. Lang, A. H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O. (2019). PointPillars: Fast Encoders for Object Detection From Point Clouds. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). doi: https://doi.org/10.1109/cvpr.2019.01298
  14. Tu, J., Wang, P., Liu, F. (2021). PP-RCNN: Point-Pillars Feature Set Abstraction for 3D Real-time Object Detection. 2021 International Joint Conference on Neural Networks (IJCNN). doi: https://doi.org/10.1109/ijcnn52387.2021.9534098
  15. Hu, T., Sun, X., Su, Y., Guan, H., Sun, Q., Kelly, M., Guo, Q. (2020). Development and Performance Evaluation of a Very Low-Cost UAV-Lidar System for Forestry Applications. Remote Sensing, 13 (1), 77. doi: https://doi.org/10.3390/rs13010077
  16. Guan, L., Chen, Y., Wang, G., Lei, X. (2020). Real-Time Vehicle Detection Framework Based on the Fusion of LiDAR and Camera. Electronics, 9 (3), 451. doi: https://doi.org/10.3390/electronics9030451
  17. Shin, M.-O., Oh, G.-M., Kim, S.-W., Seo, S.-W. (2017). Real-Time and Accurate Segmentation of 3-D Point Clouds Based on Gaussian Process Regression. IEEE Transactions on Intelligent Transportation Systems, 18 (12), 3363–3377. doi: https://doi.org/10.1109/tits.2017.2685523
  18. Cai, H., Rasdorf, W. (2008). Modeling Road Centerlines and Predicting Lengths in 3-D Using LIDAR Point Cloud and Planimetric Road Centerline Data. Computer-Aided Civil and Infrastructure Engineering, 23 (3), 157–173. doi: https://doi.org/10.1111/j.1467-8667.2008.00518.x
  19. Marshall, M. R., Hellfeld, D., Joshi, T. H. Y., Salathe, M., Bandstra, M. S., Bilton, K. J. et al. (2021). 3-D Object Tracking in Panoramic Video and LiDAR for Radiological Source–Object Attribution and Improved Source Detection. IEEE Transactions on Nuclear Science, 68 (2), 189–202. doi: https://doi.org/10.1109/tns.2020.3047646
  20. Xiao, P., Shao, Z., Hao, S., Zhang, Z., Chai, X., Jiao, J. et al. (2021). PandaSet: Advanced Sensor Suite Dataset for Autonomous Driving. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC). doi: https://doi.org/10.1109/itsc48978.2021.9565009
  21. Shi, W., Rajkumar, R. (2020). Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). doi: https://doi.org/10.1109/cvpr42600.2020.00178
  22. Song, S., Lichtenberg, S. P., Xiao, J. (2015). SUN RGB-D: A RGB-D scene understanding benchmark suite. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi: https://doi.org/10.1109/cvpr.2015.7298655
  23. Geiger, A., Lenz, P., Stiller, C., Urtasun, R. (2013). Vision meets robotics: The KITTI dataset. The International Journal of Robotics Research, 32 (11), 1231–1237. doi: https://doi.org/10.1177/0278364913491297
  24. Qi, C. R., Litany, O., He, K., Guibas, L. (2019). Deep Hough Voting for 3D Object Detection in Point Clouds. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). doi: https://doi.org/10.1109/iccv.2019.00937
Розробка виявлення об'єктів з хмар точок тривимірного набору даних за допомогою нейронної мережі Point-Pillars

##submission.downloads##

Опубліковано

2023-04-29

Як цитувати

Bashi, O. I. D., Hameed, H. K., Al Kubaiaisi, Y. M., & Sabry, A. H. (2023). Розробка виявлення об’єктів з хмар точок тривимірного набору даних за допомогою нейронної мережі Point-Pillars . Eastern-European Journal of Enterprise Technologies, 2(9 (122), 26–33. https://doi.org/10.15587/1729-4061.2023.275155

Номер

Розділ

Інформаційно-керуючі системи