Регресійні моделі щодо оцінки ефективності вібраційного розділення насіння пастернаку з урахуванням динаміки повітря на підставі чисельного моделювання та натурного експерименту
DOI:
https://doi.org/10.15587/1729-4061.2023.275592Ключові слова:
аэродинамический экран, вибрационное движение, легковесные семена, линейная регрессия, разделение семянАнотація
Для зменшення трудомісткості досліджень щодо проєктування перспективних вібраційних машин з мінімізацією шкідливого впливу аеродинамічного фактору зручно використовувати регресійні моделі. За їх допомогою здійснюється кількісна оцінка ефективності розділення (очищення) насіннєвих сумішей залежно від параметрів конструкції та режиму роботи вібраційних машин.
Наведено результати досліджень щодо побудови регресійних моделей для насіння пастернаку на підставі проведення чисельного моделювання та натурного експерименту. На підставі чисельного моделювання побудовано чотирьох-факторну регресійну модель другого порядку, де враховано: геометричні характеристики аеродинамічного екрану, конструкції блоку робочих поверхонь і амплітуду коливань вібраційної машини. На підставі натурного експерименту отримано трьох-факторну регресійну модель другого порядку для постійного зазору між робочими поверхнями.
Порівняльний аналіз отриманих регресійних моделей дозволяє стверджувати, що чисельне моделювання забезпечує задовільну точність щодо оцінки впливу аеродинамічного фактору. Ця оцінка, при використанні регресійної моделі на підставі чисельного експерименту, перебільшують оцінку, що визначається за натурним експериментом, на 5–15 % (залежно від локалізації області варіювання регресатів).
З цього, чисельну модель процесу вібраційного руху легковажного насіння з урахуванням дії аеродинамічних сил та моментів, що використовується для побудови регресійної моделі розділення насіння пастернаку, можна вважати адекватною. Регресійні моделі (для пастернаку та інших рослинних культур), які отримані на підставі чисельного моделювання, слід використовувати для вирішення задач оптимізації параметрів вібраційних машин за критерієм зменшення шкідливого впливу аеродинамічного фактору.
Посилання
- Zaika, P. M., Ilin, V. Ia. (1987). Opredelenie statcionarnoi sostavliaiushchei skorosti vozdushnogo potoka mezhdu rabochimi poverkhnostiami mnogodekovogo vibroseparatora. Primenenie noveishikh matematicheskikh metodov i vychislitelnoi tekhniki v reshenii inzhenernykh zadach, XV (10), 54–58.
- El-Gamal, R. A., Radwan, S. M. A., ElAmir, M. S., El-Masry, G. M. A. (2011). Aerodynamic properties of some oilseeds crops under different moisture conditions. Journal of Soil Sciences and Agricultural Engineering, 2 (5), 495–507. doi: https://doi.org/10.21608/jssae.2011.55480
- Chen, B., Wang, B., Mao, F., Ke, B., Wen, J., Tian, R., Lu, C. (2020). Review on separation mechanism of corrugated plate separator. Annals of Nuclear Energy, 144. doi: https://doi.org/10.1016/j.anucene.2020.107548
- Cortes, C., Gil, A. (2007). Modeling the gas and particle flow inside cyclone separators. Progress in Energy and Combustion Science, 33 (5), 409–452. doi: https://doi.org/10.1016/j.pecs.2007.02.001
- Mehta, R. D. (1979). The aerodynamic design of blower tunnels with wide-angle diffusers. Progress in Aerospace Sciences, 18, 59–120. doi: https://doi.org/10.1016/0376-0421(77)90003-3
- Golovanevskiy, V. A., Arsentyev, V. A., Blekhman, I. I., Vasilkov, V. B., Azbel, Y. I., Yakimova, K. S. (2011). Vibration-induced phenomena in bulk granular materials. International Journal of Mineral Processing, 100 (3-4), 79–85. doi: https://doi.org/10.1016/j.minpro.2011.05.001
- Bourges, G., Medina, M. (2013). Air-seeds flow analysis in a distributor head of an “air drill” seeder. Acta Horticulturae, 1008, 259–264. doi: https://doi.org/10.17660/actahortic.2013.1008.34
- Aliiev, E., Gavrilchenko, A., Tesliuk, H., Tolstenko, A., Koshul’ko, V. (2019). Improvement of the sunflower seed separation process efficiency on the vibrating surface. Acta Periodica Technologica, 50, 12–22. doi: https://doi.org/10.2298/apt1950012a
- Antoshchenkov, R., Nikiforov, А., Galych, I., Tolstolutskyi, V., Antoshchenkova, V., Diundik, S. (2020). Solution of the system of gas-dynamic equations for the processes of interaction of vibrators with the air. Eastern-European Journal of Enterprise Technologies, 2 (7 (104)), 67–73. doi: https://doi.org/10.15587/1729-4061.2020.198501
- Nikiforov, А., Nykyforova, А., Antoshchenkov, R., Antoshchenkova, V., Diundik, S., Mazanov, V. (2021). Development of a mathematical model of vibratory non-lift movement of light seeds taking into account the aerodynamic forces and moments. Eastern-European Journal of Enterprise Technologies, 3 (1 (111)), 70–78. doi: https://doi.org/10.15587/1729-4061.2021.232508
- Nykyforov, А., Antoshchenkov, R., Halych, I., Kis, V., Polyansky, P., Koshulko, V. et al. (2022). Construction of a regression model for assessing the efficiency of separation of lightweight seeds on vibratory machines involving measures to reduce the harmful influence of the aerodynamic factor. Eastern-European Journal of Enterprise Technologies, 2 (1 (116)), 24–34. doi: https://doi.org/10.15587/1729-4061.2022.253657
- Gary W. Oehlert (2010). A First Course in Design and Analysis of Experiments. Available at: https://www.academia.edu/11316527/A_First_Course_in_Design_and_Analysis_of_Experiments
- Acevedo, M. F. (2013). Data Analysis and Statistics for Geography, Environmental Science, and Engineering. Hoboken: CRC Press, 557. doi: https://doi.org/10.1201/b13675
- Metcalfe, A., Green, D., Greenfield, T., Mansor, M., Smith, A., Tuke, J. (2019). Statistics in Engineering: With Examples in MATLAB and R. CRC, 810. doi: https://doi.org/10.1201/9781315117232
- Lukynenko, V., Nikiforov, A., Galych, I. (2015). The method of calculating the aerodynamic characteristics of three-dimensional figures of irregular shape. Visnyk KhNTUSH imeni Petra Vasylenka, 156, 459–464. Available at: http://nbuv.gov.ua/UJRN/Vkhdtusg_2015_156_71
- Kozachenko, O. V., Nykyforov, A. O., Bakum, M. V., Krekot, M. M., Pikh, E. O. (2021). Pat. No. 149837 UA. MPK: B07B13/00. Vibratsiina nasinnieochysna mashyna. u202103892; declareted: 05.07.2021; published: 08.12.2021, Bul. No. 49.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2023 Аnton Nykyforov, Roman Antoshchenkov, Ivan Halych, Liliia Kis-Korkishchenko, Viсtor Kis, Alla Dombrovska, Inna Kilimnik
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.