Розробка технології виробництва порошкового титану з низьким карбоновим слідом

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2023.276746

Ключові слова:

титанові порошки, діоксид титану, дендрит, деоксидація титану, карбоновий слід, відновлення

Анотація

Проведений аналіз сучасних технологій отримання титану з оксидної сировини. Встановлено, що сучасні промислові методи отримання титану вимагають використання вуглецю в якості відновника та, відповідно, не можуть зменшити кількість вуглецевих викидів без зміни технології. Саме тому розробка технології отримання титану із зменшенням рівня викидів вуглецевих компонентів є актуальною. Отже, об’єктом дослідження є технологія отримання титану з його оксиду без використання вуглецевих компонентів. Встановлено, що комплексний підхід до підготовки сировини та розділення відновних процесів з послідовним використанням двох типів відновників – магнію та кальцію, дозволив створити ефективний процес отримання титану без використання вуглецевих відновників. Виявлений вплив хлоридів кальцію та магнію, як промоутерів процесу відновлення. Експериментальними дослідженнями встановлено, що форма та щільність сировинних елементів суттєво впливають на ефективність процесу відновлення за рахунок впорядкування потоків відновника та продуктів реакції в садці печі. Встановлені закономірності  дозволили вдосконалити процес відновлення оксиду титану та отримали зразки титанових порошків з вмістом кисню на рівні 0,17 %, що відповідає міжнародним стандартам на титанові сплави та порошки. Додаткова плазмова обробка дозволила отримати матеріали, які за всіма показниками були придатними для адитивних процесів. Системний підхід до утилізації продуктів реакцій дозволив створити технологічну схему, за якої всі можливі відходи або повертаються в технологічний процес після обробки, або переробляються в товарну продукцію. За результатами дослідження розроблена технологічна схема отримання порошків титанових сплавів з оксиду титану методом комплексного відновлення в дві стадії – магнієм та кальцієм. Запропонована схема складається зі стандартних металургійних процесів та приведена до стандартних процесів і обладнання металургійних підприємств та  хімічної промисловості.

З точки зору практичної значущості, результати роботи можуть бути використані при розробці промислової технології отримання титану з діоксиду титану без використання вуглецевих компонентів

Біографії авторів

Андрій Григорович Гончар, ТОВ «ВЕЛТА РД ТИТАН»; ТОВ «РД Тайтен Груп»

Заступник генерального директора-технічний директор

Директор

Віктор Вікторович Трощило, ТОВ «ВЕЛТА РД ТИТАН»; ТОВ «РД Тайтен Груп»

Генеральний директор

Технічний директор

Andriy Brodskyy, VELTA HOLDING US INC

President

Володимир Юхимович Яровинський, ТОВ «Титанера»

Директор з інновацій

Олександр Іванович Чухманов, ТОВ «ВЕЛТА РД ТИТАН»

Головний хімік

Посилання

  1. Williams, J. C., Boyer, R. R. (2020). Opportunities and Issues in the Application of Titanium Alloys for Aerospace Components. Metals, 10 (6), 705. doi: https://doi.org/10.3390/met10060705
  2. Liu, S., Song, X., Xue, T., Ma, N., Wang, Y., Wang, L. (2020). Application and development of titanium alloy and titanium matrix composites in aerospace field. Journal of Aeronautical Materials, 2020, 40 (3), 77–94. doi: https://doi.org/10.11868/j.issn.1005-5053.2020.000061
  3. Haider, A. J., Jameel, Z. N., Al-Hussaini, I. H. M. (2019). Review on: Titanium Dioxide Applications. Energy Procedia, 157, 17–29. doi: https://doi.org/10.1016/j.egypro.2018.11.159
  4. Chen, M. C., Koh, P. W., Ponnusamy, V. K., Lee, S. L. (2022). Titanium dioxide and other nanomaterials based antimicrobial additives in functional paints and coatings: Review. Progress in Organic Coatings, 163, 106660. doi: https://doi.org/10.1016/j.porgcoat.2021.106660
  5. Adams, R. (2022). Thirtieth anniversary conference: TiO2 & colour pigments in amsterdam. Focus on Pigments, 2022 (11), 1–4. doi: https://doi.org/10.1016/j.fop.2022.10.001
  6. Kapustyan, A. Y., Ovchinnikov, A. V., Yanko, T. B. (2018). Syntered titanium alloys for nuclear industry. Questions of atomic science and technology, 1 (113), 134–141. Available at: https://vant.kipt.kharkov.ua/ARTICLE/VANT_2018_1/article_2018_1_134.pdf
  7. Baltatu, M. S., Tugui, C. A., Perju, M. C., Benchea, M., Spataru, M. C., Sandu, A. V., Vizureanu, P. (2019). Biocompatible titanium alloys used in medical applications. Revista de Chimie, 70 (4), 1302–1306. doi: https://doi.org/10.37358/RC.19.4.7114
  8. Taşdemir, A., Nohut, S. (2021). An overview of wire arc additive manufacturing (WAAM) in shipbuilding industry. Ships and Offshore Structures, 16 (7), 797–814. doi: https://doi.org/10.1080/17445302.2020.1786232
  9. Li, M., Pan, Y., Zou, Y. (2021). Application and optimization design of Titanium alloy in sports equipment. Journal of Physics: Conference Series, 1820. doi: https://doi.org/10.1088/1742-6596/1820/1/012011
  10. Zhang, L.-C., Chen, L.-Y. (2019). A review on biomedical titanium alloys: recent progress and prospect. Advanced Engineering Materials, 21 (4), 1801215. doi: https://doi.org/10.1002/adem.201801215
  11. Froes, F. H., Qian, M., Niinomi, M. (Eds.) (2019). Titanium for Consumer Applications: Real-World Use of Titanium. Elsevier.
  12. Mohr, W. (2010). Assessment of Structural Integrity of Titanium Weldments for U.S. Navy Applications. Singapore. doi: https://doi.org/10.3850/978-981-08-5118-7_070
  13. Yimeng, F., Wenhua, W., Xun, G., Yadong, L., Xiaozhou, Z., Qingyan, M. et al. (2021). Characteristics, Connotation and Military Application of Additive Remanufacturing Technology. Journal of Physics: Conference Series, 1948 (1), 012118. doi: https://doi.org/10.1088/1742-6596/1948/1/012118
  14. Fang, Z. Z., Paramore, J. D., Sun, P., Chandran, K. R., Zhang, Y., Xia, Y. et al. (2018). Powder metallurgy of titanium – past, present, and future. International Materials Reviews, 63 (7), 407–459. doi: https://doi.org/10.1080/09506608.2017.1366003
  15. Behera, M. P., Dougherty, T., Singamneni, S. (2019). Conventional and Additive Manufacturing with Metal Matrix Composites: A Perspective. Procedia Manufacturing, 30, 159–166. doi: https://doi.org/10.1016/j.promfg.2019.02.023
  16. Zhang, T., Liu, C.-T. (2021). Design of titanium alloys by additive manufacturing: A critical review. Advanced Powder Materials, 1 (1), 100014. doi: https://doi.org/10.1016/j.apmate.2021.11.001
  17. Denkena, B., Jacob, S. (2015). Approach for increasing the resource efficiency for the production process of titanium structural components. Procedia CIRP, 35, 45–49. doi: https://doi.org/10.1016/j.procir.2015.08.054
  18. Xin, S., Zhang, J., Mao, X., Zhao, Y., Hong, Q. (2019). Research and Development of Low-cost Titanium Alloys. Journal of Physics: Conference Series, 1347 (1), 012022. doi: https://doi.org/10.1088/1742-6596/1347/1/012022
  19. Reddy, R. G., Shinde, P. S., Liu, A. (2021). Review – The Emerging Technologies for Producing Low-Cost Titanium. Journal of The Electrochemical Society, 168 (4), 042502. doi: https://doi.org/10.1149/1945-7111/abe50d
  20. Titanium Manufacturing Process. Available at: https://www.osaka-ti.co.jp/e/e_product/titan/
  21. Doblin, C., Chryss, A., Monch, A. (2012). Titanium powder from the TiRO™ process. Key Engineering Materials, 520, 95–100. doi: https://doi.org/10.4028/www.scientific.net/KEM.520.95
  22. van Vuuren, D. S. (2015). Direct titanium powder production by metallothermic processes. Titanium Powder Metallurgy, 69–93. doi: https://doi.org/10.1016/B978-0-12-800054-0.00005-8
  23. Hansen, D. A., Gerdemann, S. J. (1998). Producing titanium powder by continuous vapor-phase reduction. JOM, 50 (11), 56–58. doi: https://doi.org/10.1007/s11837-998-0289-3
  24. Chen, W., Yamamoto, Y., Peter, W. H. (2010). Investigation of pressing and sintering processes of CP-Ti powder made by Armstrong Process. Key Engineering Materials, 436, 123–130. doi: https://doi.org/10.4028/www.scientific.net/KEM.436.123
  25. El Khalloufi, M., Drevelle, O., Soucy, G. (2021). Titanium: An Overview of Resources and Production Methods. Minerals, 11, 1425. doi: https://doi.org/10.3390/min11121425
  26. Zhang, Y., Fang, Z. Z., Xia, Y., Huang, Z., Lefler, H., Zhang, T. et al. (2016). A novel chemical pathway for energy efficient production of Ti metal from upgraded titanium slag. Chemical Engineering Journal, 286, 517–527. doi: https://doi.org/10.1016/j.cej.2015.10.090
  27. Zhang, Y., Fang, Z. Z., Sun, P., Zheng, S., Xia, Y., Free, M. (2017). A perspective on thermochemical and electrochemical processes for titanium metal production. JOM, 69, 1861–1868. doi: https://doi.org/10.1007/s11837-017-2481-9
  28. Noguchi, H., Natsui, S., Kikuchi, T., Suzuki, R. O. (2018). Reduction of CaTiO3 by electrolysis in the molten salt CaCl2-CaO. Electrochemistry, 86 (2), 82–87. doi: https://doi.org/10.5796/electrochemistry.17-00078
  29. Yanko, T. B., Ovchinnikov, A. V., Lyutyk, N. P., Korzhyk, V. N. (2018). Technology for obtaining of plasma spheroidised HDH titanium alloy powders used in 3D printing. Technological systems, 85/4. doi: https://doi.org/10.29010/085.7
  30. Karaca, A., Sermond, B., Wilfing, G. (2008). Pat. No. US UA102387C2. Method for manufacturing alloy powders based on titanium, zirconium and hafnium, alloyed with elements Ni, Cu, Ta, W, Re, Os, and Ir. Available at: https://patents.google.com/patent/UA102387C2/en
  31. Buttner, G., Domazer, H.-G., Eggert, H. (1980). Pat. No. US 4373947A. Process for the preparation of alloy powders which can be sintered and which are based on titanium. Available at: https://patents.google.com/patent/US4373947A/de
  32. Moxson, V. S., Duz, V. A., Klevtsov, A. G., Sukhoplyuyev, V. D., Sopka, M. D., Shuvalov, Y. V., Matviychuk, M. (2012). Pat. No. US9067264B2. Method of manufacturing pure titanium hydride powder and alloyed titanium hydride powders by combined hydrogen-magnesium reduction of metal halides.
  33. Abayaweera, G., Amaratunga, G., Fernando, N., Karunaratne, V., Kottegoda, N., Ekanayake, R. (2016). Pat. No. US 10316391B2. Method of producing titanium from titanium oxides through magnesium vapour reduction. Available at: https://patents.google.com/patent/US10316391B2/en
  34. Bolivar, R., Friedrich, B. (2019). Magnesiothermic Reduction from Titanium Dioxide to Produce Titanium Powder. Journal of Sustainable Metallurgy, 5 (2), 219–229. doi: https://doi.org/10.1007/s40831-019-00215-z
  35. Bolívar, R., Friedrich, B. (2009). Synthesis of titanium via magnesiothermic reduction of TiO2 (Pigment). Proceedings - European Metallurgical Conference. doi: https://doi.org/10.13140/RG.2.2.11374.61760
  36. Kharytonov, V. M., Kharytonov, V. N., Kharytonov, D. V. (2020). Osoblyvosti khimichnoho skladu ilmenitu.
  37. Brodskyy, A., Troshchylo, V., Gonchar, A., Chukhmanov, O., Romanov, R. (2022). US Pat. No. 11440096 B2.
  38. Brodskyy, A., Troshchylo, V., Gonchar, A., Chukhmanov, O., Romanov, R. (2022). WO 2022/046020/A1.
  39. Mineral commodity summaries 2020. doi: https://doi.org/10.3133/mcs2020
  40. Cardarelli, F. (2008). Materials handbook: a concise desktop reference. Springer. doi: https://doi.org/10.1007/978-1-84628-669-8
  41. Ito, M., Morita, K. (2004). The solubility of MgO in molten MgCl2-CaCl2 salt. Materials transactions, 45 (8), 2712–2718. doi: https://doi.org/10.2320/matertrans.45.2712
  42. Chen, G. Z., Fray, D. J., Farthing, T. W. (2000). Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature, 407 (6802), 361–364. https://doi.org/10.1038/35030069
  43. Dring, K. (2006). Electrochemical Reduction of Titanium Dioxide in Molten Calcium Chloride. Available at: http://hdl.handle.net/10044/1/8135
  44. Suzuki, R. O., Natsui, S., Kikuchi, T. (2020). OS process. Extractive Metallurgy of Titanium, 287–313. doi: https://doi.org/10.1016/b978-0-12-817200-1.00012-0
  45. Suzuki, R. O. (2005). Calciothermic reduction of TiO2 and in situ electrolysis of CaO in the molten CaCl2. Journal of Physics and Chemistry of Solids, 66 (2-4), 461–465. doi: https://doi.org/10.1016/j.jpcs.2004.06.041
  46. Fray, D. J., Chen, G. Z. (2001). The use of electro-deoxidation to reduce titanium dioxide and other metal oxides. Proceedings of the Fourth International Conference on Materials Engineering for Resources. Available at: https://nottingham-repository.worktribe.com/output/3214612
  47. Ono, K., Okabe, T., Ogawa, M., Suzuki, R. (1990). Production of titanium powders by the calciothermic reduction of TiO2. Tetsu-to-Hagane, 76 (4), 568–575. doi: https://doi.org/10.2355/tetsutohagane1955.76.4_568
  48. Sittig, C., Textor, M., Spencer, N. D., Wieland, M., Vallotton, P. H. (1999). Surface characterization. Journal of Materials Science: Materials in Medicine, 10 (1), 35–46. doi: https://doi.org/10.1023/a:1008840026907
  49. Prando, D., Brenna, A., Diamanti, M. V., Beretta, S., Bolzoni, F., Ormellese, M., Pedeferri, M. (2017). Corrosion of titanium: Part 2: Effects of surface treatments. Journal of Applied Biomaterials & Functional Materials, 16 (1), 3–13. doi: https://doi.org/10.5301/jabfm.5000396
  50. Fuentes, E., Alves, S., López-Ortega, A., Mendizabal, L., Sáenz de Viteri, V. (2019). Advanced Surface Treatments on Titanium and Titanium Alloys Focused on Electrochemical and Physical Technologies for Biomedical Applications. Biomaterial-Supported Tissue Reconstruction or Regeneration. doi: https://doi.org/10.5772/intechopen.85095
Розробка технології виробництва порошкового титану з низьким карбоновим слідом

##submission.downloads##

Опубліковано

2023-04-29

Як цитувати

Гончар, А. Г., Трощило, В. В., Brodskyy, A., Яровинський, В. Ю., & Чухманов, О. І. (2023). Розробка технології виробництва порошкового титану з низьким карбоновим слідом. Eastern-European Journal of Enterprise Technologies, 2(12 (122), 42–54. https://doi.org/10.15587/1729-4061.2023.276746

Номер

Розділ

Матеріалознавство