Виявлення особливостей гістограм небезпечних параметрів газового середовища при відсутні та виникненні загорянь
DOI:
https://doi.org/10.15587/1729-4061.2023.285966Ключові слова:
пожежна небезпека, гістограма динаміки, небезпечні параметри, газове середовище, зведена статистика, розмах варіюванняАнотація
Об'єктом дослідження є гістограми динаміки небезпечних параметрів газового середовища, значення якої вимірюються в поточному часі на інтервалах відсутності та загорянні матеріалів. Описано метод визначення гістограм при типовому відборі вимірів. Даний метод дозволяє визначати гістограми для вибірок довільного положення та розміру інтервалу даних вимірювань динаміки небезпечних параметрів газового середовища. На основі гістограм на інтервалах відсутності та появи загорянь тестових матеріалів можуть бути визначені показники їхньої зведеної статистики. Проведено лабораторні експерименти з вивчення особливостей гістограм концентрації чадного газу, щільності диму та температури газового середовища для інтервалів достовірної відсутності та появи загорянь матеріалів у вигляді спирту та текстилю. Результати аналізу гістограм наочно свідчать, що динаміка досліджуваних небезпечних параметрів на зазначених інтервалах відрізняється від гаусу. При цьому гістограми відрізняються формою, яка залежить від типу матеріалу загоряння та відповідного небезпечного параметра. На основі особливостей гістограм динаміки небезпечних параметрів на інтервалах відсутності та появи загорянь тестових матеріалів визначено найпростіші показники зведеної статистики у вигляді розмаху, числа та положення мод. Встановлено, що при загорянні спирту розмах варіювання концентрації чадного газу, щільності диму та температури газового середовища збільшується з 0,545, 0,068 та 0,161 до 7,121, 0,523 та 8,71 відповідно. При цьому розмах варіювання зазначених параметрів при загорянні текстилю збільшується з 0,182, 0,205 та 0,323 до 0,394, 0,386 та 2,903 відповідно. Одержані результати у сукупності або по одному можуть використовуватися на практиці для раннього виявлення загорянь з метою недопущення виникнення пожеж у приміщеннях
Посилання
- Semko, A., Rusanova, O., Kazak, O., Beskrovnaya, M., Vinogradov, S., Gricina, I. (2015). The use of pulsed high-speed liquid jet for putting out gas blow-out. The International Journal of Multiphysics, 9 (1), 9–20. doi: https://doi.org/10.1260/1750-9548.9.1.9
- Loboichenko, V. M., Vasyukov, A. E., Tishakova, T. S. (2017). Investigations of Mineralization of Water Bodies on the Example of River Waters of Ukraine. Asian Journal of Water, Environment and Pollution, 14 (4), 37–41. doi: https://doi.org/10.3233/ajw-170035
- Popov, O., Iatsyshyn, A., Kovach, V., Artemchuk, V., Taraduda, D., Sobyna, V. et al. (2019). Physical Features of Pollutants Spread in the Air During the Emergency at NPPs. Nuclear and Radiation Safety, 4 (84), 88–98. doi: https://doi.org/10.32918/nrs.2019.4(84).11
- Popov, O., Іatsyshyn, A., Kovach, V., Artemchuk, V., Taraduda, D., Sobyna, V. et al. (2018). Conceptual Approaches for Development of Informational and Analytical Expert System for Assessing the NPP impact on the Environment. Nuclear and Radiation Safety, 3 (79), 56–65. doi: https://doi.org/10.32918/nrs.2018.3(79).09
- Tiutiunyk, V. V., Ivanets, H. V., Tolkunov, I. A., Stetsyuk, E. I. (2018). System approach for readiness assessment units of civil defense to actions at emergency situations. Scientific Bulletin of National Mining University, 1, 99–105. doi: https://doi.org/10.29202/nvngu/2018-1/7
- Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Maksymenko, N., Meleshchenko, R. et al. (2020). Mathematical model of determining a risk to the human health along with the detection of hazardous states of urban atmosphere pollution based on measuring the current concentrations of pollutants. Eastern-European Journal of Enterprise Technologies, 4 (10 (106)), 37–44. doi: https://doi.org/10.15587/1729-4061.2020.210059
- Vambol, S., Vambol, V., Sobyna, V., Koloskov, V., Poberezhna, L. (2019). Investigation of the energy efficiency of waste utilization technology, with considering the use of low-temperature separation of the resulting gas mixtures. Energetika, 64 (4). doi: https://doi.org/10.6001/energetika.v64i4.3893
- Otrosh, Y., Rybka, Y., Danilin, O., Zhuravskyi, M. (2019). Assessment of the technical state and the possibility of its control for the further safe operation of building structures of mining facilities. E3S Web of Conferences, 123, 01012. doi: https://doi.org/10.1051/e3sconf/201912301012
- Barannik, V., Sidchenko, S., Barannik, N., Barannik, V. (2021). Development of the method for encoding service data in cryptocompression image representation systems. Eastern-European Journal of Enterprise Technologies, 3 (9 (111)), 103–115. doi: https://doi.org/10.15587/1729-4061.2021.235521
- Barannik, V., Ryabukha, Y., Barannik, N., Barannik, D. (2020). Indirect Steganographic Embedding Method Based on Modifications of the Basis of the Polyadic System. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). doi: https://doi.org/10.1109/tcset49122.2020.235522
- Sadkovyi, V., Andronov, V., Semkiv, O., Kovalov, A., Rybka, E., Otrosh, Yu. et. al.; Sadkovyi, V., Rybka, E., Otrosh, Yu. (Eds.) (2021). Fire resistance of reinforced concrete and steel structures. Kharkiv: РС ТЕСHNOLOGY СЕNTЕR, 180. doi: https://doi.org/10.15587/978-617-7319-43-5
- Ragimov, S., Sobyna, V., Vambol, S., Vambol, V., Feshchenko, A., Zakora, A. et al. (2018). Physical modelling of changes in the energy impact on a worker taking into account hightemperature radiation. Journal of Achievements in Materials and Manufacturing Engineering, 1 (91), 27–33. doi: https://doi.org/10.5604/01.3001.0012.9654
- Vambol, S., Vambol, V., Kondratenko, O., Koloskov, V., Suchikova, Y. (2018). Substantiation of expedience of application of high-temperature utilization of used tires for liquefied methane production. Journal of Achievements in Materials and Manufacturing Engineering, 2 (87), 77–84. doi: https://doi.org/10.5604/01.3001.0012.2830
- Kovalov, A., Otrosh, Y., Rybka, E., Kovalevska, T., Togobytska, V., Rolin, I. (2020). Treatment of Determination Method for Strength Characteristics of Reinforcing Steel by Using Thread Cutting Method after Temperature Influence. Materials Science Forum, 1006, 179–184. doi: https://doi.org/10.4028/www.scientific.net/msf.1006.179
- Kondratenko, O., Vambol, S., Strokov, O., Avramenko, A. (2015). Mathematical model of the efficiency of diesel particulate matter filter. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 55–61.
- Vasyukov, A., Loboichenko, V., Bushtec, S. (2016). Identification of bottled natural waters by using direct conductometry. Ecology, Environment and Conservation, 22 (3), 1171–1176.
- Pospelov, B., Kovrehin, V., Rybka, E., Krainiukov, O., Petukhova, O., Butenko, T. et al. (2020). Development of a method for detecting dangerous states of polluted atmospheric air based on the current recurrence of the combined risk. Eastern-European Journal of Enterprise Technologies, 5 (9 (107)), 49–56. doi: https://doi.org/10.15587/1729-4061.2020.213892
- World Fire Statistics (2022). Center for Fire Statistics of CTIF, 27, 65. Available at: https://ctif.org/sites/default/files/2022-08/CTIF_Report27_ESG.pdf
- Chernukha, A., Teslenko, A., Kovalov, P., Bezuglov, O. (2020). Mathematical Modeling of Fire-Proof Efficiency of Coatings Based on Silicate Composition. Materials Science Forum, 1006, 70–75. doi: https://doi.org/10.4028/www.scientific.net/msf.1006.70
- Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Biryukov, I., Butenko, T. et al. (2021). Short-term fire forecast based on air state gain recurrence and zero-order brown model. Eastern-European Journal of Enterprise Technologies, 3 (10 (111)), 27–33. doi: https://doi.org/10.15587/1729-4061.2021.233606
- Pospelov, B., Rybka, E., Krainiukov, O., Yashchenko, O., Bezuhla, Y., Bielai, S. et al. (2021). Short-term forecast of fire in the premises based on modification of the Brown’s zero-order model. Eastern-European Journal of Enterprise Technologies, 4 (10 (112)), 52–58. doi: https://doi.org/10.15587/1729-4061.2021.238555
- Kovalov, A., Otrosh, Y., Ostroverkh, O., Hrushovinchuk, O., Savchenko, O. (2018). Fire resistance evaluation of reinforced concrete floors with fire-retardant coating by calculation and experimental method. E3S Web of Conferences, 60, 00003. doi: https://doi.org/10.1051/e3sconf/20186000003
- Pospelov, B., Andronov, V., Rybka, E., Samoilov, M., Krainiukov, O., Biryukov, I. et al. (2021). Development of the method of operational forecasting of fire in the premises of objects under real conditions. Eastern-European Journal of Enterprise Technologies, 2 (10 (110)), 43–50. doi: https://doi.org/10.15587/1729-4061.2021.226692
- Muhammad, K., Ahmad, J., Baik, S. W. (2018). Early fire detection using convolutional neural networks during surveillance for effective disaster management. Neurocomputing, 288, 30–42. doi: https://doi.org/10.1016/j.neucom.2017.04.083
- Gottuk, D. T., Wright, M. T., Wong, J. T., Pham, H. V., Rose-Pehrsson, S. L., Hart, S. et al. (2002). Prototype Early Warning Fire Detection Systems: Test Series 4 Results. NRL/MR/6180-02-8602. Naval Research Laboratory.
- Barannik, V., Babenko, Y., Kulitsa, O., Barannik, V., Khimenko, A., Matviichuk-Yudina, O. (2020). Significant Microsegment Transformants Encoding Method to Increase the Availability of Video Information Resource. 2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT). doi: https://doi.org/10.1109/atit50783.2020.9349256
- Muhammad, K., Ahmad, J., Mehmood, I., Rho, S., Baik, S. W. (2018). Convolutional Neural Networks Based Fire Detection in Surveillance Videos. IEEE Access, 6, 18174–18183. doi: https://doi.org/10.1109/access.2018.2812835
- Andronov, V., Pospelov, B., Rybka, E., Skliarov, S. (2017). Examining the learning fire detectors under real conditions of application. Eastern-European Journal of Enterprise Technologies, 3 (9 (87)), 53–59. doi: https://doi.org/10.15587/1729-4061.2017.101985
- Cheng, C., Sun, F., Zhou, X. (2011). One fire detection method using neural networks. Tsinghua Science and Technology, 16 (1), 31–35. doi: https://doi.org/10.1016/s1007-0214(11)70005-0
- Ding, Q., Peng, Z., Liu, T., Tong, Q. (2014). Multi-Sensor Building Fire Alarm System with Information Fusion Technology Based on D-S Evidence Theory. Algorithms, 7 (4), 523–537. doi: https://doi.org/10.3390/a7040523
- Wu, Y., Harada, T. (2004). Study on the Burning Behaviour of Plantation Wood. Scientia Silvae Sinicae, 40, 131.
- Ji, J., Yang, L., Fan, W. (2003). Experimental Study on Effects of Burning Behaviours of Materials Caused by External Heat Radiation. Journal of Combustion Science and Technology, 9, 139.
- Peng, X., Liu, S., Lu, G. (2005). Experimental Analysis on Heat Release Rate of Materials. Journal of Chongqing University, 28, 122.
- Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Karpets, K., Pirohov, O. et al. (2019). Development of the correlation method for operative detection of recurrent states. Eastern-European Journal of Enterprise Technologies, 6 (4 (102)), 39–46. doi: https://doi.org/10.15587/1729-4061.2019.187252
- Pospelov, B., Rybka, E., Togobytska, V., Meleshchenko, R., Danchenko, Y., Butenko, T. et al. (2019). Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots. Eastern-European Journal of Enterprise Technologies, 4 (10 (100)), 22–29. doi: https://doi.org/10.15587/1729-4061.2019.176579
- Sadkovyi, V., Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Rud, A. et al. (2020). Construction of a method for detecting arbitrary hazard pollutants in the atmospheric air based on the structural function of the current pollutant concentrations. Eastern-European Journal of Enterprise Technologies, 6 (10 (108)), 14–22. doi: https://doi.org/10.15587/1729-4061.2020.218714
- Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Harbuz, S., Bezuhla, Y. et al. (2020). Use of uncertainty function for identification of hazardous states of atmospheric pollution vector. Eastern-European Journal of Enterprise Technologies, 2 (10 (104)), 6–12. doi: https://doi.org/10.15587/1729-4061.2020.200140
- Sadkovyi, V., Pospelov, B., Rybka, E., Kreminskyi, B., Yashchenko, O., Bezuhla, Y. et al. (2022). Development of a method for assessing the reliability of fire detection in premises. Eastern-European Journal of Enterprise Technologies, 3 (10 (117)), 56–62. doi: https://doi.org/10.15587/1729-4061.2022.259493
- Pospelov, B., Rybka, E., Samoilov, M., Morozov, I., Bezuhla, Y., Butenko, T. et al. (2022). Defining the features of amplitude and phase spectra of dangerous factors of gas medium during the ignition of materials in the premises. Eastern-European Journal of Enterprise Technologies, 2 (10 (116)), 57–65. doi: https://doi.org/10.15587/1729-4061.2022.254500
- Pospelov, B., Rybka, E., Savchenko, A., Dashkovska, O., Harbuz, S., Naden, E. et al. (2022). Peculiarities of amplitude spectra of the third order for the early detection of indoor fires. Eastern-European Journal of Enterprise Technologies, 5 (10 (119)), 49–56. doi: https://doi.org/10.15587/1729-4061.2022.265781
- Pospelov, B., Andronov, V., Rybka, E., Chubko, L., Bezuhla, Y., Gordiichuk, S. et al. (2023). Revealing the peculiarities of average bicoherence of frequencies in the spectra of dangerous parameters of the gas environment during fire. Eastern-European Journal of Enterprise Technologies, 1 (10 (121)), 46–54. doi: https://doi.org/10.15587/1729-4061.2023.272949
- Polstyankin, R. M. (2015). Stokhasticheskie modeli opasnykh faktorov i parametrov ochaga zagoraniya v pomescheniyakh. Problemy pozharnoy bezopasnosti, 38, 130–135.
- Mykhailiuk, O. P. (2018). Osoblyvosti otsinky nebezpechnykh faktoriv pozhezhi. Materialy IX Mizhnarodnoi naukovo-praktychnoi konferentsiyi «Teoriya i praktyka hasinnia pozhezh ta likvidatsiyi nadzvychainykh sytuatsiy». Cherkasy, 269–270. Available at: http://91.234.43.156/handle/123456789/8383
- Pasport. Spovishchuvach pozhezhnyi teplovyi tochkovyi. Arton. Available at: https://ua.arton.com.ua/files/passports/%D0%A2%D0%9F%D0%A2-4_UA.pdf
- Pasport. Spovishchuvach pozhezhnyi dymovyi tochkovyi optychnyi. Arton. Available at: https://ua.arton.com.ua/files/passports/spd-32_new_pas_ua.pdf
- Optical/Heat Multisensor Detector (2019). Discovery. Available at: https://www.nsc-hellas.gr/pdf/APOLLO/discovery/B02704-00%20Discovery%20Multisensor%20Heat-%20Optical.pdf
- Gmurman, V. E. (1972). Teoriya veroyatnostey i matematicheskaya statistika. Moscow: Vyssh. shkola, 368.
- Derr, V. Ya. (2021). Teoriya veroyatnostey i matematicheskaya statistika. Sankt-Peterburg: Lan', 596.
- McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., Overholt, K. (2016). Fire Dynamics Simulator Technical Reference Guide. Vol. 3. National Institute of Standards and Technology.
- Floyd, J., Forney, G., Hostikka, S., Korhonen, T., McDermott, R., McGrattan, K. (2013). Fire Dynamics Simulator (Version 6) User’s Guide. Vol. 1. National Institute of Standard and Technology.
- Sosnytska, N. L., Malkina, V. M., Ishchenko, O. A., Zinovieva, O. H. (2019). Prykladna matematyka. Melitopol: TOV «Kolor Prynt», 100.
- Buhl, A., Zofel, P. (2005). SPSS: The art of information processing. Analysis of statistical data and reconstruction of hidden regularities, 608.
- Orlov, Yu. N., Osminin, K. P. (2008). Postroenie vyborochnoy funktsii raspredeleniya dlya prognozirovaniya nestatsionarnogo vremennogo ryada. Matematicheskoe modelirovanie, 20 (9), 23–33.
- Dragotti, P. L., Vetterli, M., Blu, T. (2007). Sampling Moments and Reconstructing Signals of Finite Rate of Innovation: Shannon Meets Strang–Fix. IEEE Transactions on Signal Processing, 55 (5), 1741–1757. doi: https://doi.org/10.1109/tsp.2006.890907
- Nasledov, A. D. (2013). IBM SPSS Statistics 20 i AMOS: professional'nyy statisticheskiy analiz dannykh. Sankt-Peterburg: Piter, 416.
- Kompiuterne modeliuvannia protsesiv i system (2022). Kyvi: KPI im. Ihoria Sikorskoho, 89. Available at: https://ela.kpi.ua/handle/123456789/57252
- Benker, H. (2004). Benutzeroberfläche von MATHCAD. Mathematik mit MATHCAD. Springer, 19–35. doi: https://doi.org/10.1007/3-540-35118-3_3
- Young, S., Zielinski, T. J. (1996). An Introduction to Mathcad. Notes, 1400.
- Bol, G. (2004). Deskriptive Statistik. Oldenbourg: Oldenbourg Verlag. doi: https://doi.org/10.1524/9783486599510
- Tkach, Ye. I., Storozhuk, V. P. (2009). Zahalna teoriya statystyky. Kyiv: Tsentr uchbovoi literatury, 442. Available at: http://dspace.wunu.edu.ua/jspui/bitstream/316497/463/1/загальна%20теорія%20статистики.pdf
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2023 Boris Pospelov, Evgenіy Rybka, Yuliia Bezuhla, Batyr Khalmuradov, Olena Petukhova, Stella Gornostal, Yurii Kozar, Yuriy Yatsentyuk, Svitlana Hryshko, Svyatoslav Manzhura
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.