Determining the features of histograms of dangerous parameters of the gas environment in the absence and occurrence of fire

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.285966

Keywords:

fire hazard, dynamics histogram, dangerous parameters, gas environment, summary statistics, range of variation

Abstract

The object of research is histograms of the dynamics of dangerous parameters of the gas environment, the values of which are measured in real time at the intervals of absence and ignition of materials. The method of determining histograms during a typical selection of measurements is described. This method allows one to determine histograms for samples of an arbitrary position and the size of the data interval of measurements of the dynamics of dangerous parameters of the gas environment. On the basis of histograms on the intervals of the absence and occurrence of fires of test materials, indicators of their summary statistics can be determined. Laboratory experiments were conducted to study the features of the histograms of carbon monoxide concentration, smoke density, and temperature of the gas medium for intervals of reliable absence and appearance of ignition of materials in the form of alcohol and textiles. The results of the analysis of the histograms clearly show that the dynamics of the studied dangerous parameters at the indicated intervals differ from the Gaussian. At the same time, the histograms differ in shape, which depends on the type of ignition material and the corresponding dangerous parameter. Based on the features of the histograms of the dynamics of dangerous parameters on the intervals of the absence and appearance of fires of test materials, the simplest indicators of summary statistics in the form of the range, number, and position of the modes are determined. It was established that when alcohol ignites, the variation range of carbon monoxide concentration, smoke density, and gas temperature increases from 0.545, 0.068, and 0.161 to 7.121, 0.523, and 8.71, respectively. At the same time, the range of variation of these parameters during textile ignition increases from 0.182, 0.205, and 0.323 to 0.394, 0.386, and 2.903, respectively. The obtained results in aggregate or one by one can be used in practice for early detection of fires in order to prevent the occurrence of fires in premises

Author Biographies

Boris Pospelov, Educational Institutions in the Sphere of Civil Defence

Doctor of Technical Sciences, Professor

Evgenіy Rybka, National University of Civil Defence of Ukraine

Doctor of Technical Sciences, Professor

Research Center

Yuliia Bezuhla, National University of Civil Defence of Ukraine

PhD, Associate Professor

Department of Prevention Activities and Monitoring

Batyr Khalmuradov, National Aviation University

PhD, Professor

Department of Civil and Industrial Safety

Olena Petukhova, National University of Civil Defence of Ukraine

PhD, Associate Professor

Department of Fire Prevention in Settlements

Stella Gornostal, National University of Civil Defence of Ukraine

PhD, Associate Professor

Department of Labor Protection and Technogenic and Environmental Safety

Yurii Kozar, Luhansk State Medical University

Doctor of Law Sciences, Professor

Department of Biology, Histology, Pathomorphology and Forensic Medicine

Yuriy Yatsentyuk, Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University

Doctor of Geography Sciences, Professor

Department of Geography

Svitlana Hryshko, Bogdan Khmelnitsky Melitopol State Pedagogical University

PhD, Associate Professor

Department of Geography and Tourism

Svyatoslav Manzhura, National Academy of the National Guard of Ukraine

PhD

Research Center

References

  1. Semko, A., Rusanova, O., Kazak, O., Beskrovnaya, M., Vinogradov, S., Gricina, I. (2015). The use of pulsed high-speed liquid jet for putting out gas blow-out. The International Journal of Multiphysics, 9 (1), 9–20. doi: https://doi.org/10.1260/1750-9548.9.1.9
  2. Loboichenko, V. M., Vasyukov, A. E., Tishakova, T. S. (2017). Investigations of Mineralization of Water Bodies on the Example of River Waters of Ukraine. Asian Journal of Water, Environment and Pollution, 14 (4), 37–41. doi: https://doi.org/10.3233/ajw-170035
  3. Popov, O., Iatsyshyn, A., Kovach, V., Artemchuk, V., Taraduda, D., Sobyna, V. et al. (2019). Physical Features of Pollutants Spread in the Air During the Emergency at NPPs. Nuclear and Radiation Safety, 4 (84), 88–98. doi: https://doi.org/10.32918/nrs.2019.4(84).11
  4. Popov, O., Іatsyshyn, A., Kovach, V., Artemchuk, V., Taraduda, D., Sobyna, V. et al. (2018). Conceptual Approaches for Development of Informational and Analytical Expert System for Assessing the NPP impact on the Environment. Nuclear and Radiation Safety, 3 (79), 56–65. doi: https://doi.org/10.32918/nrs.2018.3(79).09
  5. Tiutiunyk, V. V., Ivanets, H. V., Tolkunov, I. A., Stetsyuk, E. I. (2018). System approach for readiness assessment units of civil defense to actions at emergency situations. Scientific Bulletin of National Mining University, 1, 99–105. doi: https://doi.org/10.29202/nvngu/2018-1/7
  6. Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Maksymenko, N., Meleshchenko, R. et al. (2020). Mathematical model of determining a risk to the human health along with the detection of hazardous states of urban atmosphere pollution based on measuring the current concentrations of pollutants. Eastern-European Journal of Enterprise Technologies, 4 (10 (106)), 37–44. doi: https://doi.org/10.15587/1729-4061.2020.210059
  7. Vambol, S., Vambol, V., Sobyna, V., Koloskov, V., Poberezhna, L. (2019). Investigation of the energy efficiency of waste utilization technology, with considering the use of low-temperature separation of the resulting gas mixtures. Energetika, 64 (4). doi: https://doi.org/10.6001/energetika.v64i4.3893
  8. Otrosh, Y., Rybka, Y., Danilin, O., Zhuravskyi, M. (2019). Assessment of the technical state and the possibility of its control for the further safe operation of building structures of mining facilities. E3S Web of Conferences, 123, 01012. doi: https://doi.org/10.1051/e3sconf/201912301012
  9. Barannik, V., Sidchenko, S., Barannik, N., Barannik, V. (2021). Development of the method for encoding service data in cryptocompression image representation systems. Eastern-European Journal of Enterprise Technologies, 3 (9 (111)), 103–115. doi: https://doi.org/10.15587/1729-4061.2021.235521
  10. Barannik, V., Ryabukha, Y., Barannik, N., Barannik, D. (2020). Indirect Steganographic Embedding Method Based on Modifications of the Basis of the Polyadic System. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). doi: https://doi.org/10.1109/tcset49122.2020.235522
  11. Sadkovyi, V., Andronov, V., Semkiv, O., Kovalov, A., Rybka, E., Otrosh, Yu. et. al.; Sadkovyi, V., Rybka, E., Otrosh, Yu. (Eds.) (2021). Fire resistance of reinforced concrete and steel structures. Kharkiv: РС ТЕСHNOLOGY СЕNTЕR, 180. doi: https://doi.org/10.15587/978-617-7319-43-5
  12. Ragimov, S., Sobyna, V., Vambol, S., Vambol, V., Feshchenko, A., Zakora, A. et al. (2018). Physical modelling of changes in the energy impact on a worker taking into account high­temperature radiation. Journal of Achievements in Materials and Manufacturing Engineering, 1 (91), 27–33. doi: https://doi.org/10.5604/01.3001.0012.9654
  13. Vambol, S., Vambol, V., Kondratenko, O., Koloskov, V., Suchikova, Y. (2018). Substantiation of expedience of application of high-temperature utilization of used tires for liquefied methane production. Journal of Achievements in Materials and Manufacturing Engineering, 2 (87), 77–84. doi: https://doi.org/10.5604/01.3001.0012.2830
  14. Kovalov, A., Otrosh, Y., Rybka, E., Kovalevska, T., Togobytska, V., Rolin, I. (2020). Treatment of Determination Method for Strength Characteristics of Reinforcing Steel by Using Thread Cutting Method after Temperature Influence. Materials Science Forum, 1006, 179–184. doi: https://doi.org/10.4028/www.scientific.net/msf.1006.179
  15. Kondratenko, O., Vambol, S., Strokov, O., Avramenko, A. (2015). Mathematical model of the efficiency of diesel particulate matter filter. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 55–61.
  16. Vasyukov, A., Loboichenko, V., Bushtec, S. (2016). Identification of bottled natural waters by using direct conductometry. Ecology, Environment and Conservation, 22 (3), 1171–1176.
  17. Pospelov, B., Kovrehin, V., Rybka, E., Krainiukov, O., Petukhova, O., Butenko, T. et al. (2020). Development of a method for detecting dangerous states of polluted atmospheric air based on the current recurrence of the combined risk. Eastern-European Journal of Enterprise Technologies, 5 (9 (107)), 49–56. doi: https://doi.org/10.15587/1729-4061.2020.213892
  18. World Fire Statistics (2022). Center for Fire Statistics of CTIF, 27, 65. Available at: https://ctif.org/sites/default/files/2022-08/CTIF_Report27_ESG.pdf
  19. Chernukha, A., Teslenko, A., Kovalov, P., Bezuglov, O. (2020). Mathematical Modeling of Fire-Proof Efficiency of Coatings Based on Silicate Composition. Materials Science Forum, 1006, 70–75. doi: https://doi.org/10.4028/www.scientific.net/msf.1006.70
  20. Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Biryukov, I., Butenko, T. et al. (2021). Short-term fire forecast based on air state gain recurrence and zero-order brown model. Eastern-European Journal of Enterprise Technologies, 3 (10 (111)), 27–33. doi: https://doi.org/10.15587/1729-4061.2021.233606
  21. Pospelov, B., Rybka, E., Krainiukov, O., Yashchenko, O., Bezuhla, Y., Bielai, S. et al. (2021). Short-term forecast of fire in the premises based on modification of the Brown’s zero-order model. Eastern-European Journal of Enterprise Technologies, 4 (10 (112)), 52–58. doi: https://doi.org/10.15587/1729-4061.2021.238555
  22. Kovalov, A., Otrosh, Y., Ostroverkh, O., Hrushovinchuk, O., Savchenko, O. (2018). Fire resistance evaluation of reinforced concrete floors with fire-retardant coating by calculation and experimental method. E3S Web of Conferences, 60, 00003. doi: https://doi.org/10.1051/e3sconf/20186000003
  23. Pospelov, B., Andronov, V., Rybka, E., Samoilov, M., Krainiukov, O., Biryukov, I. et al. (2021). Development of the method of operational forecasting of fire in the premises of objects under real conditions. Eastern-European Journal of Enterprise Technologies, 2 (10 (110)), 43–50. doi: https://doi.org/10.15587/1729-4061.2021.226692
  24. Muhammad, K., Ahmad, J., Baik, S. W. (2018). Early fire detection using convolutional neural networks during surveillance for effective disaster management. Neurocomputing, 288, 30–42. doi: https://doi.org/10.1016/j.neucom.2017.04.083
  25. Gottuk, D. T., Wright, M. T., Wong, J. T., Pham, H. V., Rose-Pehrsson, S. L., Hart, S. et al. (2002). Prototype Early Warning Fire Detection Systems: Test Series 4 Results. NRL/MR/6180-02-8602. Naval Research Laboratory.
  26. Barannik, V., Babenko, Y., Kulitsa, O., Barannik, V., Khimenko, A., Matviichuk-Yudina, O. (2020). Significant Microsegment Transformants Encoding Method to Increase the Availability of Video Information Resource. 2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT). doi: https://doi.org/10.1109/atit50783.2020.9349256
  27. Muhammad, K., Ahmad, J., Mehmood, I., Rho, S., Baik, S. W. (2018). Convolutional Neural Networks Based Fire Detection in Surveillance Videos. IEEE Access, 6, 18174–18183. doi: https://doi.org/10.1109/access.2018.2812835
  28. Andronov, V., Pospelov, B., Rybka, E., Skliarov, S. (2017). Examining the learning fire detectors under real conditions of application. Eastern-European Journal of Enterprise Technologies, 3 (9 (87)), 53–59. doi: https://doi.org/10.15587/1729-4061.2017.101985
  29. Cheng, C., Sun, F., Zhou, X. (2011). One fire detection method using neural networks. Tsinghua Science and Technology, 16 (1), 31–35. doi: https://doi.org/10.1016/s1007-0214(11)70005-0
  30. Ding, Q., Peng, Z., Liu, T., Tong, Q. (2014). Multi-Sensor Building Fire Alarm System with Information Fusion Technology Based on D-S Evidence Theory. Algorithms, 7 (4), 523–537. doi: https://doi.org/10.3390/a7040523
  31. Wu, Y., Harada, T. (2004). Study on the Burning Behaviour of Plantation Wood. Scientia Silvae Sinicae, 40, 131.
  32. Ji, J., Yang, L., Fan, W. (2003). Experimental Study on Effects of Burning Behaviours of Materials Caused by External Heat Radiation. Journal of Combustion Science and Technology, 9, 139.
  33. Peng, X., Liu, S., Lu, G. (2005). Experimental Analysis on Heat Release Rate of Materials. Journal of Chongqing University, 28, 122.
  34. Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Karpets, K., Pirohov, O. et al. (2019). Development of the correlation method for operative detection of recurrent states. Eastern-European Journal of Enterprise Technologies, 6 (4 (102)), 39–46. doi: https://doi.org/10.15587/1729-4061.2019.187252
  35. Pospelov, B., Rybka, E., Togobytska, V., Meleshchenko, R., Danchenko, Y., Butenko, T. et al. (2019). Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots. Eastern-European Journal of Enterprise Technologies, 4 (10 (100)), 22–29. doi: https://doi.org/10.15587/1729-4061.2019.176579
  36. Sadkovyi, V., Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Rud, A. et al. (2020). Construction of a method for detecting arbitrary hazard pollutants in the atmospheric air based on the structural function of the current pollutant concentrations. Eastern-European Journal of Enterprise Technologies, 6 (10 (108)), 14–22. doi: https://doi.org/10.15587/1729-4061.2020.218714
  37. Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Harbuz, S., Bezuhla, Y. et al. (2020). Use of uncertainty function for identification of hazardous states of atmospheric pollution vector. Eastern-European Journal of Enterprise Technologies, 2 (10 (104)), 6–12. doi: https://doi.org/10.15587/1729-4061.2020.200140
  38. Sadkovyi, V., Pospelov, B., Rybka, E., Kreminskyi, B., Yashchenko, O., Bezuhla, Y. et al. (2022). Development of a method for assessing the reliability of fire detection in premises. Eastern-European Journal of Enterprise Technologies, 3 (10 (117)), 56–62. doi: https://doi.org/10.15587/1729-4061.2022.259493
  39. Pospelov, B., Rybka, E., Samoilov, M., Morozov, I., Bezuhla, Y., Butenko, T. et al. (2022). Defining the features of amplitude and phase spectra of dangerous factors of gas medium during the ignition of materials in the premises. Eastern-European Journal of Enterprise Technologies, 2 (10 (116)), 57–65. doi: https://doi.org/10.15587/1729-4061.2022.254500
  40. Pospelov, B., Rybka, E., Savchenko, A., Dashkovska, O., Harbuz, S., Naden, E. et al. (2022). Peculiarities of amplitude spectra of the third order for the early detection of indoor fires. Eastern-European Journal of Enterprise Technologies, 5 (10 (119)), 49–56. doi: https://doi.org/10.15587/1729-4061.2022.265781
  41. Pospelov, B., Andronov, V., Rybka, E., Chubko, L., Bezuhla, Y., Gordiichuk, S. et al. (2023). Revealing the peculiarities of average bicoherence of frequencies in the spectra of dangerous parameters of the gas environment during fire. Eastern-European Journal of Enterprise Technologies, 1 (10 (121)), 46–54. doi: https://doi.org/10.15587/1729-4061.2023.272949
  42. Polstyankin, R. M. (2015). Stokhasticheskie modeli opasnykh faktorov i parametrov ochaga zagoraniya v pomescheniyakh. Problemy pozharnoy bezopasnosti, 38, 130–135.
  43. Mykhailiuk, O. P. (2018). Osoblyvosti otsinky nebezpechnykh faktoriv pozhezhi. Materialy IX Mizhnarodnoi naukovo-praktychnoi konferentsiyi «Teoriya i praktyka hasinnia pozhezh ta likvidatsiyi nadzvychainykh sytuatsiy». Cherkasy, 269–270. Available at: http://91.234.43.156/handle/123456789/8383
  44. Pasport. Spovishchuvach pozhezhnyi teplovyi tochkovyi. Arton. Available at: https://ua.arton.com.ua/files/passports/%D0%A2%D0%9F%D0%A2-4_UA.pdf
  45. Pasport. Spovishchuvach pozhezhnyi dymovyi tochkovyi optychnyi. Arton. Available at: https://ua.arton.com.ua/files/passports/spd-32_new_pas_ua.pdf
  46. Optical/Heat Multisensor Detector (2019). Discovery. Available at: https://www.nsc-hellas.gr/pdf/APOLLO/discovery/B02704-00%20Discovery%20Multisensor%20Heat-%20Optical.pdf
  47. Gmurman, V. E. (1972). Teoriya veroyatnostey i matematicheskaya statistika. Moscow: Vyssh. shkola, 368.
  48. Derr, V. Ya. (2021). Teoriya veroyatnostey i matematicheskaya statistika. Sankt-Peterburg: Lan', 596.
  49. McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., Overholt, K. (2016). Fire Dynamics Simulator Technical Reference Guide. Vol. 3. National Institute of Standards and Technology.
  50. Floyd, J., Forney, G., Hostikka, S., Korhonen, T., McDermott, R., McGrattan, K. (2013). Fire Dynamics Simulator (Version 6) User’s Guide. Vol. 1. National Institute of Standard and Technology.
  51. Sosnytska, N. L., Malkina, V. M., Ishchenko, O. A., Zinovieva, O. H. (2019). Prykladna matematyka. Melitopol: TOV «Kolor Prynt», 100.
  52. Buhl, A., Zofel, P. (2005). SPSS: The art of information processing. Analysis of statistical data and reconstruction of hidden regularities, 608.
  53. Orlov, Yu. N., Osminin, K. P. (2008). Postroenie vyborochnoy funktsii raspredeleniya dlya prognozirovaniya nestatsionarnogo vremennogo ryada. Matematicheskoe modelirovanie, 20 (9), 23–33.
  54. Dragotti, P. L., Vetterli, M., Blu, T. (2007). Sampling Moments and Reconstructing Signals of Finite Rate of Innovation: Shannon Meets Strang–Fix. IEEE Transactions on Signal Processing, 55 (5), 1741–1757. doi: https://doi.org/10.1109/tsp.2006.890907
  55. Nasledov, A. D. (2013). IBM SPSS Statistics 20 i AMOS: professional'nyy statisticheskiy analiz dannykh. Sankt-Peterburg: Piter, 416.
  56. Kompiuterne modeliuvannia protsesiv i system (2022). Kyvi: KPI im. Ihoria Sikorskoho, 89. Available at: https://ela.kpi.ua/handle/123456789/57252
  57. Benker, H. (2004). Benutzeroberfläche von MATHCAD. Mathematik mit MATHCAD. Springer, 19–35. doi: https://doi.org/10.1007/3-540-35118-3_3
  58. Young, S., Zielinski, T. J. (1996). An Introduction to Mathcad. Notes, 1400.
  59. Bol, G. (2004). Deskriptive Statistik. Oldenbourg: Oldenbourg Verlag. doi: https://doi.org/10.1524/9783486599510
  60. Tkach, Ye. I., Storozhuk, V. P. (2009). Zahalna teoriya statystyky. Kyiv: Tsentr uchbovoi literatury, 442. Available at: http://dspace.wunu.edu.ua/jspui/bitstream/316497/463/1/загальна%20теорія%20статистики.pdf
Determining the features of histograms of dangerous parameters of the gas environment in the absence and occurrence of fire

Downloads

Published

2023-08-31

How to Cite

Pospelov, B., Rybka, E., Bezuhla, Y., Khalmuradov, B., Petukhova, O., Gornostal, S., Kozar, Y., Yatsentyuk, Y., Hryshko, S., & Manzhura, S. (2023). Determining the features of histograms of dangerous parameters of the gas environment in the absence and occurrence of fire. Eastern-European Journal of Enterprise Technologies, 4(10 (124), 15–23. https://doi.org/10.15587/1729-4061.2023.285966