Дослідницький аналіз: впровадження інноваційних енергетичних технологій та їх узгодження з ЦСР 12

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2023.288396

Ключові слова:

інноваційні енергетичні технології, відновлювані джерела енергії, енергетичний перехід, стале споживання, стале виробництво

Анотація

Об'єктом дослідження є узгодження інноваційних енергетичних технологій з Ціллю сталого розвитку (ЦСР) 12 щодо сталого споживання та виробництва. Завданням, яке необхідно вирішити, є неясність щодо того, як ці технології сприяють досягненню ЦСР 12. Дане дослідження спрямоване на проведення стратегічного аналізу зовнішніх факторів, що впливають на інноваційні енергетичні технології з точки зору ЦСР 12. Результати показують, що інноваційні енергетичні технології, такі як біоенергетика, геотермальна енергетика, сонячна енергетика, вітроенергетика, гідроенергетика та енергія океану, сприяють підвищенню енергоефективності, скороченню викидів та зниженню кількості відходів та токсинів. Дані технології узгоджуються з ЦСР 12 та визначаються різними законодавчими актами. Вони перетинаються з переходом від використання викопного палива, що потребує аналізу в контексті інших ЦСР ООН. Правова база має адаптуватися до інноваційних енергетичних технологій. Отримані результати наголошують, що інноваційні енергетичні технології підтримують ЦСР 12 шляхом забезпечення енергоефективності та скорочення кількості викидів. Ці технології спрямовані на вирішення економічних та екологічних завдань, сприяння сталому прогресу та економічному зростанню, підвищення конкурентоспроможності підприємств, стабілізацію цін, диверсифікацію джерел енергії, забезпечення національної енергетичної безпеки та скорочення масштабів енергетичної бідності. Масштаби та умови практичного застосування результатів даного дослідження дають цінну інформацію для наукової спільноти, енергетичних компаній, директивних органів та інвесторів в енергетичному секторі. Вони можуть бути використані для обґрунтування рішень та стратегій, спрямованих на приведення енергетичних технологій у відповідність до цілей ЦСР 12. Однак впровадження та ефективність цих технологій також залежать від нормативної підтримки, галузевого співробітництва та суспільного прийняття нових енергетичних рішень.

Спонсор дослідження

  • We all know each other thanks to The Eureca-Pro Alliance. We would also like to express our gratitude to all those who contributed to and helped develop this article, with special thanks to the editor and reviewers whose diligent efforts improved the quality of the article.

Біографії авторів

Svetlana Kunskaja, Lithuanian Energy Institute

PhD Student in Economics

Laboratory of Energy Systems Research

Johannes Fabian Bauer, TU Bergakademie Freiberg

PhD Student in Reservoir Engineering

Institute for Drilling and Production Engineering

Artur Budzyński, Silesian University of Technology

PhD Student in Civil Engineering and Transportation

Department of Rail Transport

Ilie-Ciprian Jitea, National Institute for Research and Development in Mine Safety and Protection to Explosion; University of Petrosani

Researcher

PhD Student in Industrial Engineering

Посилання

  1. Jonkutė, G. (2016). Model of sustainable consumption and production management of the company. Kaunas University of Technology.
  2. Lin, D., Wambersie, L., Wackernagel, M. (2022). Estimating the Date of Earth Overshoot Day 2022. Nowcasting the World’s Footprint & Biocapacity for 2022.
  3. Danish, Hassan, S. T., Baloch, M. A., Mahmood, N., Zhang, J. (2019). Linking economic growth and ecological footprint through human capital and biocapacity. Sustainable Cities and Society, 47, 101516. doi: https://doi.org/10.1016/j.scs.2019.101516
  4. Mikalauskas, I. (2020). Energetikos technologijų visuomeninio priimtinumo vertinimas. Vilniaus universitetas, 156. doi: https://doi.org/10.15388/vu.thesis.50
  5. Chen, H., Gao, K., Tian, S., Sun, R., Cui, K., Zhang, Y. (2023). Nexus between energy poverty and sustainable energy technologies: A roadmap towards environmental sustainability. Sustainable Energy Technologies and Assessments, 56, 102949. doi: https://doi.org/10.1016/j.seta.2022.102949
  6. Kolagar, M., Hosseini, S. M. H., Felegari, R., Fattahi, P. (2019). Policy-making for renewable energy sources in search of sustainable development: a hybrid DEA-FBWM approach. Environment Systems and Decisions, 40 (4), 485–509. doi: https://doi.org/10.1007/s10669-019-09747-x
  7. Tutak, M., Brodny, J., Bindzár, P. (2021). Assessing the Level of Energy and Climate Sustainability in the European Union Countries in the Context of the European Green Deal Strategy and Agenda 2030. Energies, 14 (6), 1767. doi: https://doi.org/10.3390/en14061767
  8. Barasa Kabeyi, M. J., Olanrewaju, O. A. (2022). Geothermal wellhead technology power plants in grid electricity generation: A review. Energy Strategy Reviews, 39, 100735. doi: https://doi.org/10.1016/j.esr.2021.100735
  9. Staniškis, J. K. (2012). Sustainable consumption and production: how to make it possible. Clean Technologies and Environmental Policy, 14 (6), 1015–1022. doi: https://doi.org/10.1007/s10098-012-0535-9
  10. Streimikiene, D., Kyriakopoulos, G. L., Lekavicius, V., Pazeraite, A. (2022). How to support sustainable energy consumption in households? Acta Montanistica Slovaca, 27, 479–490. doi: https://doi.org/10.46544/ams.v27i2.15
  11. Lin, C.-Y., Chau, K. Y., Moslehpour, M., Linh, H. V., Duong, K. D., Ngo, T. Q. (2022). Factors influencing the sustainable energy technologies adaptation in ASEAN countries. Sustainable Energy Technologies and Assessments, 53, 102668. doi: https://doi.org/10.1016/j.seta.2022.102668
  12. Stankuniene, G., Streimikiene, D., Kyriakopoulos, G. L. (2020). Systematic Literature Review on Behavioral Barriers of Climate Change Mitigation in Households. Sustainability, 12 (18), 7369. doi: https://doi.org/10.3390/su12187369
  13. International energy outlook 2021. Available at: https://www.eia.gov/outlooks/ieo/
  14. Moodley, P., Trois, C. (2021). Lignocellulosic biorefineries: the path forward. Sustainable Biofuels, 21–42. doi: https://doi.org/10.1016/b978-0-12-820297-5.00010-4
  15. Da Rosa, A. V., Ordóñez, J. C. (2021). Fundamentals of Renewable Energy Processes. Academic Press. doi: https://doi.org/10.1016/C2015-0-05615-5
  16. World Energy Outlook 2022. Available at: https://www.iea.org/reports/world-energy-outlook-2022
  17. Energy Technology Perspectives 2023. Available at: https://www.iea.org/reports/energy-technology-perspectives-2023
  18. Longe, O. M. (2021). An Assessment of the Energy Poverty and Gender Nexus towards Clean Energy Adoption in Rural South Africa. Energies, 14 (12), 3708. doi: https://doi.org/10.3390/en14123708
  19. Wang, F., Harindintwali, J. D., Yuan, Z., Wang, M., Wang, F., Li, S. et al. (2021). Technologies and perspectives for achieving carbon neutrality. The Innovation, 2 (4), 100180. doi: https://doi.org/10.1016/j.xinn.2021.100180
  20. Johansson, T. B., Nakicenovic, N., Patwardhan, A., Gomez-Echeverri, L. (Eds.) (2012). Global energy assessment: toward a sustainable future. Cambridge University Press. doi: https://doi.org/10.1017/cbo9780511793677
  21. Menegaki, A. N., Tsagarakis, K. P. (2015). Rich enough to go renewable, but too early to leave fossil energy? Renewable and Sustainable Energy Reviews, 41, 1465–1477. doi: https://doi.org/10.1016/j.rser.2014.09.038
  22. Martins, F., Felgueiras, C., Smitkova, M., Caetano, N. (2019). Analysis of Fossil Fuel Energy Consumption and Environmental Impacts in European Countries. Energies, 12 (6), 964. doi: https://doi.org/10.3390/en12060964
  23. Carley, S., Konisky, D. M. (2020). The justice and equity implications of the clean energy transition. Nature Energy, 5 (8), 569–577. doi: https://doi.org/10.1038/s41560-020-0641-6
  24. Krishnan, S. K., Kandasamy, S., Subbiah, K. (2021). Fabrication of microbial fuel cells with nanoelectrodes for enhanced bioenergy production. Nanomaterials, 677–687. doi: https://doi.org/10.1016/b978-0-12-822401-4.00003-9
  25. Rath, P., Jindal, M., Jindal, T. (2021). A review on economically-feasible and environmental-friendly technologies promising a sustainable environment. Cleaner Engineering and Technology, 5, 100318. doi: https://doi.org/10.1016/j.clet.2021.100318
  26. Raghutla, C., Chittedi, K. R. (2023). The effect of technological innovation and clean energy consumption on carbon neutrality in top clean energy-consuming countries: A panel estimation. Energy Strategy Reviews, 47, 101091. doi: https://doi.org/10.1016/j.esr.2023.101091
  27. Global Temperature 2021. NASA. Available at: https://climate.nasa.gov/vital-signs/global-temperature/
  28. Li, D Ge, A. (2023). New energy technology innovation and sustainable economic development in the complex scientific environment. Energy Reports, 9, 4214–4223. doi: https://doi.org/10.1016/j.egyr.2023.03.029
  29. Tracking SDG7: The Energy Progress Report 2022. Available at: https://www.iea.org/reports/tracking-sdg7-the-energy-progress-report-2022
  30. Galimova, T., Ram, M., Breyer, C. (2022). Mitigation of air pollution and corresponding impacts during a global energy transition towards 100% renewable energy system by 2050. Energy Reports, 8, 14124–14143. doi: https://doi.org/10.1016/j.egyr.2022.10.343
  31. Bilgili, F., Koçak, E., Bulut, Ü. (2016). The dynamic impact of renewable energy consumption on CO2 emissions: A revisited Environmental Kuznets Curve approach. Renewable and Sustainable Energy Reviews, 54, 838–845. doi: https://doi.org/10.1016/j.rser.2015.10.080
  32. Vo, D. H., Vo, A. T. (2021). Renewable energy and population growth for sustainable development in the Southeast Asian countries. Energy, Sustainability and Society, 11 (1). doi: https://doi.org/10.1186/s13705-021-00304-6
  33. Cergibozan, R. (2022). Renewable energy sources as a solution for energy security risk: Empirical evidence from OECD countries. Renewable Energy, 183, 617–626. doi: https://doi.org/10.1016/j.renene.2021.11.056
  34. Zhao, J., Dong, K., Dong, X., Shahbaz, M. (2022). How renewable energy alleviate energy poverty? A global analysis. Renewable Energy, 186, 299–311. doi: https://doi.org/10.1016/j.renene.2022.01.005
  35. Wang, W., Xiao, W., Bai, C. (2022). Can renewable energy technology innovation alleviate energy poverty? Perspective from the marketization level. Technology in Society, 68, 101933. doi: https://doi.org/10.1016/j.techsoc.2022.101933
  36. Michalak, A., Wolniak, R. (2023). The innovativeness of the country and the renewables and non-renewables in the energy mix on the example of European Union. Journal of Open Innovation: Technology, Market, and Complexity, 9 (2), 100061. doi: https://doi.org/10.1016/j.joitmc.2023.100061
  37. Tamaki, R., Matoba, T., Kachi, N., Tsukamoto, H. (2017). The paradigm disruptive new energy storage Shuttle Battery™ technology. Evolutionary and Institutional Economics Review, 14 (1), 207–224. doi: https://doi.org/10.1007/s40844-016-0065-y
  38. Gunnarsdottir, I., Davidsdottir, B., Worrell, E., Sigurgeirsdottir, S. (2021). Sustainable energy development: History of the concept and emerging themes. Renewable and Sustainable Energy Reviews, 141, 110770. doi: https://doi.org/10.1016/j.rser.2021.110770
  39. Tsangas, M., Jeguirim, M., Limousy, L., Zorpas, A. (2019). The Application of Analytical Hierarchy Process in Combination with PESTEL-SWOT Analysis to Assess the Hydrocarbons Sector in Cyprus. Energies, 12 (5), 791. doi: https://doi.org/10.3390/en12050791
  40. Tidikis, R. (2003). Socialinių mokslų tyrimų metodologija. Vilnius, 628.
  41. Žydžiūnaitė, V. (2006). Taikomųjų tyrimų metodologijos charakteristikos. Vilnius.
  42. Liu, Y., Fan, X., Bao, X. (2022). Economic optimization of new energy technologies in the context of low carbon economy. Energy Reports, 8, 11899–11909. doi: https://doi.org/10.1016/j.egyr.2022.09.006
  43. Nie, Y., Zhang, G., Duan, H., Su, B., Feng, Y., Zhang, K., Gao, X. (2022). Trends in energy policy coordination research on supporting low-carbon energy development. Environmental Impact Assessment Review, 97, 106903. doi: https://doi.org/10.1016/j.eiar.2022.106903
  44. Weliwaththage, S. R., Yildirim, M. (2020). The review of innovation in renewable energy sector in the world. Journal of Research Technology and Engineering, 1 (4), 117–147.
  45. Zou, C., Huang, Y., Hu, S., Huang, Z. (2023). Government participation in low-carbon technology transfer: An evolutionary game study. Technological Forecasting and Social Change, 188, 122320. doi: https://doi.org/10.1016/j.techfore.2023.122320
  46. Minelgaite, I., Guðmundsdóttir, S., Guðmundsdóttir, Á. E., Stangej, O. (2018). Demystifying leadership in Iceland: An inquiry into cultural, societal, and entrepreneurial uniqueness. Springer, 161. doi: https://doi.org/10.1007/978-3-319-96044-9
  47. Jaiswal, K. K., Chowdhury, C. R., Yadav, D., Verma, R., Dutta, S., Jaiswal, K. S. et al. (2022). Renewable and sustainable clean energy development and impact on social, economic, and environmental health. Energy Nexus, 7, 100118. doi: https://doi.org/10.1016/j.nexus.2022.100118
  48. Zhang, Y., Alharthi, M., Ahtsham Ali, S., Abbas, Q., Taghizadeh-Hesary, F. (2022). The eco-innovative technologies, human capital, and energy pricing: Evidence of sustainable energy transition in developed economies. Applied Energy, 325, 119729. doi: https://doi.org/10.1016/j.apenergy.2022.119729
  49. Tabrizian, S. (2019). Technological innovation to achieve sustainable development – Renewable energy technologies diffusion in developing countries. Sustainable Development, 27 (3), 537–544. doi: https://doi.org/10.1002/sd.1918
  50. Ellabban, O., Abu-Rub, H., Blaabjerg, F. (2014). Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews, 39, 748–764. doi: https://doi.org/10.1016/j.rser.2014.07.113
  51. Pedraza-Rodríguez, J. A., Ruiz-Vélez, A., Sánchez-Rodríguez, M. I., Fernández-Esquinas, M. (2023). Management skills and organizational culture as sources of innovation for firms in peripheral regions. Technological Forecasting and Social Change, 191, 122518. doi: https://doi.org/10.1016/j.techfore.2023.122518
  52. Wang, C. (2022). Green Technology Innovation, Energy Consumption Structure and Sustainable Improvement of Enterprise Performance. Sustainability, 14 (16), 10168. doi: https://doi.org/10.3390/su141610168
  53. Gallagher, K. S., Grübler, A., Kuhl, L., Nemet, G., Wilson, C. (2012). The Energy Technology Innovation System. Annual Review of Environment and Resources, 37 (1), 137–162. doi: https://doi.org/10.1146/annurev-environ-060311-133915
  54. García-Nieto, P. J., García-Gonzalo, E., Paredes-Sánchez, J. P., Bernardo Sánchez, A. (2020). A new hybrid model to foretell thermal power efficiency from energy performance certificates at residential dwellings applying a Gaussian process regression. Neural Computing and Applications, 33 (12), 6627–6640. doi: https://doi.org/10.1007/s00521-020-05427-z
  55. Atuguba, R. A., Tuokuu, F. X. D. (2020). Ghana's renewable energy agenda: Legislative drafting in search of policy paralysis. Energy Research & Social Science, 64, 101453. doi: https://doi.org/10.1016/j.erss.2020.101453
  56. Valenti, W. C., Kimpara, J. M., Preto, B. de L., Moraes-Valenti, P. (2018). Indicators of sustainability to assess aquaculture systems. Ecological Indicators, 88, 402–413. doi: https://doi.org/10.1016/j.ecolind.2017.12.068
  57. Muhammed, G., Tekbiyik-Ersoy, N. (2020). Development of Renewable Energy in China, USA, and Brazil: A Comparative Study on Renewable Energy Policies. Sustainability, 12 (21), 9136. doi: https://doi.org/10.3390/su12219136
  58. Obeng-Darko, N. A. (2019). Why Ghana will not achieve its renewable energy target for electricity. Policy, legal and regulatory implications. Energy Policy, 128, 75–83. doi: https://doi.org/10.1016/j.enpol.2018.12.050
  59. Adelaja, A. O. (2020). Barriers to national renewable energy policy adoption: Insights from a case study of Nigeria. Energy Strategy Reviews, 30, 100519. doi: https://doi.org/10.1016/j.esr.2020.100519
  60. Kastrinos, N., Weber, K. M. (2020). Sustainable development goals in the research and innovation policy of the European Union. Technological Forecasting and Social Change, 157, 120056. doi: https://doi.org/10.1016/j.techfore.2020.120056
  61. Månsson, A. (2015). A resource curse for renewables? Conflict and cooperation in the renewable energy sector. Energy Research & Social Science, 10, 1–9. doi: https://doi.org/10.1016/j.erss.2015.06.008
  62. Carfora, A., Pansini, R. V., Scandurra, G. (2021). The role of environmental taxes and public policies in supporting RES investments in EU countries: Barriers and mimicking effects. Energy Policy, 149, 112044. doi: https://doi.org/10.1016/j.enpol.2020.112044
  63. Aldieri, L., Grafström, J., Sundström, K., Vinci, C. P. (2019). Wind Power and Job Creation. Sustainability, 12 (1), 45. doi: https://doi.org/10.3390/su12010045
  64. Martinez, N. (2020). Resisting renewables: The energy epistemics of social opposition in Mexico. Energy Research & Social Science, 70, 101632. doi: https://doi.org/10.1016/j.erss.2020.101632
  65. Anderson, A., Rezaie, B. (2019). Geothermal technology: Trends and potential role in a sustainable future. Applied Energy, 248, 18–34. doi: https://doi.org/10.1016/j.apenergy.2019.04.102
  66. Singh, B. P., Goyal, S. K., Kumar, P. (2021). Solar PV cell materials and technologies: Analyzing the recent developments. Materials Today: Proceedings, 43, 2843–2849. doi: https://doi.org/10.1016/j.matpr.2021.01.003
  67. Rosenbloom, D. (2017). Pathways: An emerging concept for the theory and governance of low-carbon transitions. Global Environmental Change, 43, 37–50. doi: https://doi.org/10.1016/j.gloenvcha.2016.12.011
  68. Sovacool, B. K. (2016). How long will it take? Conceptualizing the temporal dynamics of energy transitions. Energy Research & Social Science, 13, 202–215. doi: https://doi.org/10.1016/j.erss.2015.12.020
  69. Stern, N. (2015). Why are we waiting? The logic, urgency, and promise of tackling climate change. MIT Press. doi: https://doi.org/10.7551/mitpress/10408.001.0001
  70. Oswald, Y., Owen, A., Steinberger, J. K. (2020). Large inequality in international and intranational energy footprints between income groups and across consumption categories. Nature Energy, 5 (3), 231–239. doi: https://doi.org/10.1038/s41560-020-0579-8
  71. Bleischwitz, R., Spataru, C., VanDeveer, S. D., Obersteiner, M., van der Voet, E., Johnson, C. et al. (2018). Resource nexus perspectives towards the United Nations Sustainable Development Goals. Nature Sustainability, 1 (12), 737–743. doi: https://doi.org/10.1038/s41893-018-0173-2
  72. Kirchherr, J., Reike, D., Hekkert, M. (2017). Conceptualizing the circular economy: An analysis of 114 definitions. Resources, Conservation and Recycling, 127, 221–232. doi: https://doi.org/10.1016/j.resconrec.2017.09.005
  73. Jenkins, J., Nordhaus, T., Shellenberger, M. (2011). Energy Emergence: Rebound & Backfire as Emergent Phenomena. Breakthrough Institute.
Дослідницький аналіз: впровадження інноваційних енергетичних технологій та їх узгодження з ЦСР 12

##submission.downloads##

Опубліковано

2023-10-31

Як цитувати

Kunskaja, S., Bauer, J. F., Budzyński, A., & Jitea, I.-C. (2023). Дослідницький аналіз: впровадження інноваційних енергетичних технологій та їх узгодження з ЦСР 12. Eastern-European Journal of Enterprise Technologies, 5(13 (125), 6–25. https://doi.org/10.15587/1729-4061.2023.288396

Номер

Розділ

Трансфер технологій: промисловість, енергетика, нанотехнології