Створення багатоконтурної системи безпеки інформаційних взаємодій у соціокиберфізичних системах

Автор(и)

  • Сергій Петрович Євсеєв Національний технічний університет “Харківський політехнічний інститут”, Україна https://orcid.org/0000-0003-1647-6444
  • Наталія Володимирівна Дженюк Національний технічний університет “Харківський політехнічний інститут”, Україна https://orcid.org/0000-0003-0758-7935
  • Максим Юрійович Толкачов Національний технічний університет “Харківський політехнічний інститут”, Україна https://orcid.org/0000-0001-7853-5855
  • Олександр Володимирович Мілов Національний технічний університет “Харківський політехнічний інститут”, Україна https://orcid.org/0000-0001-6135-2120
  • Тетяна Миколаївна Войтко Національний університет оборони України , Україна https://orcid.org/0000-0002-4326-0633
  • Михайло Петрович Пригара Ужгородський національний університет, Україна https://orcid.org/0000-0002-0954-4480
  • Олександр Іванович Шпак Ужгородський національний університет, Україна https://orcid.org/0000-0002-1179-7196
  • Наталя Ігорівна Воропай Національний технічний університет “Харківський політехнічний інститут”, Україна https://orcid.org/0000-0003-1321-7324
  • Андрій Федорович Волков Харківський національний університет Повітряних Сил імені Івана Кожедуба, Україна https://orcid.org/0000-0003-1566-9893
  • Олександр Віталійович Лезік Харківський національний університет Повітряних Сил імені Івана Кожедуба, Україна https://orcid.org/0000-0002-7186-6683

DOI:

https://doi.org/10.15587/1729-4061.2023.289467

Ключові слова:

соціокіберфізична система, модель безпеки інформаційних взаємодій, соціальна інженерія, цільові атаки

Анотація

Об’єктом дослідження є многоконтурная система безпеки інформаційних взаємодій у соціокіберфізичних системах. Динамічний характер фізичних середовищ за своєю природою ставить під сумнів здатність соціокіберфізичних систем виконувати адекватні дії з управління керованими фізичними активами у багатьох контекстах. Однак дії з адаптації та еволюції повинні бути оцінені до їх реалізації в керованій системі, щоб забезпечити стійкість до відмови при мінімізації ризиків. Отже, дизайн соціокіберфізичних систем повинен забезпечувати не тільки надійну автономність, а й експлуатаційну стійкість до відмов і безпеку. Пропонований підхід ґрунтується на комплексуванні цільових (змішаних) загроз на основі синтезу технічних кіберзагроз із методами соціальної інженерії. Такий підхід забезпечує можливість формувати динамічну модель безпеки на основі аналізу взаємодії різних агентів у соціокіберфізичних системах, що дозволяє підвищити рівень протидії цільовим (змішаним) кіберзагрозам.

Наведені результати моделювання ґрунтуються на запропонованій класифікації загроз методів соціальної інженерії, що дозволяє кіберзловмисникам забезпечити ймовірність реалізації цільових загроз до 95–98 %. Запропонована класифікація загроз на основі методів соціальної інженерії дозволить сформувати додатковий параметр об'єктивності цільових загроз з урахуванням їхнього комплексування та синергії. При цьому представлена модель дозволить своєчасно забезпечити знання про можливість реалізації цільової атаки та своєчасно вжити превентивних заходів протидії. Такий підхід дозволить покращити комплекс заходів захисту, а також своєчасно сформувати підвищення рівня протидії персоналу компанії (організації, підприємства тощо) загрозам соціальної інженерії

Біографії авторів

Сергій Петрович Євсеєв, Національний технічний університет “Харківський політехнічний інститут”

Доктор технічних наук, професор, завідувач кафедри

Кафедра кібербезпеки

Наталія Володимирівна Дженюк, Національний технічний університет “Харківський політехнічний інститут”

Доцент

Кафедра систем інформації ім. В. О. Кравця

Максим Юрійович Толкачов, Національний технічний університет “Харківський політехнічний інститут”

Доцент

Кафедра систем інформації ім. В.О. Кравця

Олександр Володимирович Мілов, Національний технічний університет “Харківський політехнічний інститут”

Доктор технічних наук, професор

Кафедра кібербезпеки

Тетяна Миколаївна Войтко, Національний університет оборони України

Науковий співробітник

Науково-дослідний відділ

Інститут інформаційно-комунікаційних технологій та кібероборони

Михайло Петрович Пригара, Ужгородський національний університет

Кандидат технічних наук, доцент

Кафедра технології машинобудування

Олександр Іванович Шпак, Ужгородський національний університет

Кандидат фізико-математичних наук, доцент

Кафедра програмного забезпечення систем

Наталя Ігорівна Воропай, Національний технічний університет “Харківський політехнічний інститут”

Кандитат технічних наук, доцент

Кафедра кібербезпеки

Андрій Федорович Волков, Харківський національний університет Повітряних Сил імені Івана Кожедуба

Начальник кафедри

Кафедра тактики військ протиповітряної оборони Сухопутних військ

Олександр Віталійович Лезік, Харківський національний університет Повітряних Сил імені Івана Кожедуба

Кандидат військових наук, доцент

Кафедра тактики військ протиповітряної оборони Сухопутних військ

Посилання

  1. Graf, S., Quinton, S., Girault, A., Gössler, G. (2018). Building Correct Cyber-Physical Systems: Why We Need a Multiview Contract Theory. Lecture Notes in Computer Science, 19–31. doi: https://doi.org/10.1007/978-3-030-00244-2_2
  2. Bereket Abera, Y., Naudet, Y., Panetto, H. (2020). A new Paradigm and Meta-Model for Cyber-Physical-Social Systems. IFAC-PapersOnLine, 53 (2), 10949–10954. doi: https://doi.org/10.1016/j.ifacol.2020.12.2841
  3. Yilma, B. A., Naudet, Y., Panetto, H. (2019). Introduction to Personalisation in Cyber-Physical-Social Systems. Lecture Notes in Computer Science, 25–35. doi: https://doi.org/10.1007/978-3-030-11683-5_3
  4. Yilma, B. A., Panetto, H., Naudet, Y. (2019). A Meta-Model of Cyber-Physical-Social System: The CPSS Paradigm to Support Human-Machine Collaboration in Industry 4.0. IFIP Advances in Information and Communication Technology, 11–20. doi: https://doi.org/10.1007/978-3-030-28464-0_2
  5. Naudet, Y., Yilma, B. A., Panetto, H. (2018). Personalisation in Cyber Physical and Social Systems: the Case of Recommendations in Cultural Heritage Spaces. 2018 13th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP). doi: https://doi.org/10.1109/smap.2018.8501890
  6. Zeng, J., Yang, L. T., Lin, M., Ning, H., Ma, J. (2020). A survey: Cyber-physical-social systems and their system-level design methodology. Future Generation Computer Systems, 105, 1028–1042. doi: https://doi.org/10.1016/j.future.2016.06.034
  7. Sheth, A., Anantharam, P., Henson, C. (2013). Physical-Cyber-Social Computing: An Early 21st Century Approach. IEEE Intelligent Systems, 28 (1), 78–82. doi: https://doi.org/10.1109/mis.2013.20
  8. Wang, F.-Y. (2010). The Emergence of Intelligent Enterprises: From CPS to CPSS. IEEE Intelligent Systems, 25 (4), 85–88. doi: https://doi.org/10.1109/mis.2010.104
  9. Dzheniuk, N., Yevseiev, S., Opirskyy, I., Voropay, N., Korolev, R., Sydorenko, Z. (2023). Sociocyberphysical System Wireless Air Network Topology Synthesis Model. Mizhnarodnyi naukovo-praktychnyi forum «Tsyfrova realnist». Kiberbezpeka ta informatsiyni tekhnolohiyi v umovakh hibrydnykh viyn. Kharkiv-Odesa, 4–10.
  10. Horváth, I., Rusák, Z., Li, Y. (2017). Order Beyond Chaos: Introducing the Notion of Generation to Characterize the Continuously Evolving Implementations of Cyber-Physical Systems. Volume 1: 37th Computers and Information in Engineering Conference. doi: https://doi.org/10.1115/detc2017-67082
  11. Tanik, U. J., Begley, A. (2013). An Adaptive Cyber-Physical System Framework for Cyber-Physical Systems Design Automation. Applied Cyber-Physical Systems, 125–140. doi: https://doi.org/10.1007/978-1-4614-7336-7_11
  12. Yin, D., Ming, X., Zhang, X. (2020). Understanding Data-Driven Cyber-Physical-Social System (D-CPSS) Using a 7C Framework in Social Manufacturing Context. Sensors, 20 (18), 5319. doi: https://doi.org/10.3390/s20185319
  13. Hao, K. (2020). OpenAI is giving Microsoft exclusive access to its GPT-3 language model. MIT Technology Review. Available at: https://www.technologyreview.com/2020/09/23/1008729/openai-is-giving-microsoft-exclusive-access-to-its-gpt-3-language-model/
  14. Goldstein, J. A., Sastry, G., Musser, M., DiResta, R., Gentzel, M., Sedova. K. (2023). Generative Language Models and Automated Influence Operations: Emerging Threats and Potential Mitigations. Available at: https://cdn.openai.com/papers/forecasting-misuse.pdf
  15. Tabassi, E. (2023). Artificial Intelligence Risk Management Framework. NIST AI 100-1. NIST. doi: https://doi.org/10.6028/nist.ai.100-1
  16. Wang, Z., Sun, L., Zhu, H. (2020). Defining Social Engineering in Cybersecurity. IEEE Access, 8, 85094–85115. doi: https://doi.org/10.1109/access.2020.2992807
  17. NIST Special Publication 1270. Proposes a framework for identifying and managing bias in artificial intelligence.
  18. Foster, D. (2023). Generative Deep Learning. O'Reilly Media, Inc.
  19. Yevseiev, S., Milevskyi, S., Bortnik, L., Alexey, V., Bondarenko, K., Pohasii, S. (2022). Socio-Cyber-Physical Systems Security Concept. 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). doi: https://doi.org/10.1109/hora55278.2022.9799957
  20. Wang, Z., Zhu, H., Sun, L. (2021). Social Engineering in Cybersecurity: Effect Mechanisms, Human Vulnerabilities and Attack Methods. IEEE Access, 9, 11895–11910. doi: https://doi.org/10.1109/access.2021.3051633
  21. Prete, E. D., Pera, F., Faramondi, L., Fioravanti, C., Guarino, S., Oliva, G., Setola, R. (2020). Anomaly and Attack Detection in Supervisory Control Networks for Cyber-Physical Systems. Proceedings of the 30th European Safety and Reliability Conference and 15th Probabilistic Safety Assessment and Management Conference. doi: https://doi.org/10.3850/978-981-14-8593-0_4315-cd
  22. Toublanc, T., Guillet, S., de Lamotte, F., Berruet, P., Lapotre, V. (2017). Using a Virtual Plant to Support the Development of Intelligent Gateway for Sensors/Actuators Security. IFAC-PapersOnLine, 50 (1), 5837–5842. doi: https://doi.org/10.1016/j.ifacol.2017.08.541
  23. Calefato, F., Lanubile, F., Novielli, N. (2017). A Preliminary Analysis on the Effects of Propensity to Trust in Distributed Software Development. 2017 IEEE 12th International Conference on Global Software Engineering (ICGSE). doi: https://doi.org/10.1109/icgse.2017.1
  24. Lombardi, M., Vannuccini, S. (2022). Understanding emerging patterns and dynamics through the lenses of the cyber-physical universe. Patterns, 3 (11), 100601. doi: https://doi.org/10.1016/j.patter.2022.100601
  25. Roy, T., Tariq, A., Dey, S. (2022). A Socio-Technical Approach for Resilient Connected Transportation Systems in Smart Cities. IEEE Transactions on Intelligent Transportation Systems, 23 (6), 5019–5028. doi: https://doi.org/10.1109/tits.2020.3045854
  26. Hamzaoui, M. A., Julien, N. (2022). Social Cyber-Physical Systems and Digital Twins Networks: A perspective about the future digital twin ecosystems. IFAC-PapersOnLine, 55 (8), 31–36. doi: https://doi.org/10.1016/j.ifacol.2022.08.006
  27. Li, X., Ye, P., Li, J., Liu, Z., Cao, L., Wang, F.-Y. (2022). From Features Engineering to Scenarios Engineering for Trustworthy AI: I&I, C&C, and V&V. IEEE Intelligent Systems, 37 (4), 18–26. doi: https://doi.org/10.1109/mis.2022.3197950
  28. Lezoche, M., Panetto, H. (2018). Cyber-Physical Systems, a new formal paradigm to model redundancy and resiliency. Enterprise Information Systems, 14 (8), 1150–1171. doi: https://doi.org/10.1080/17517575.2018.1536807
  29. Sowe, S. K., Simmon, E., Zettsu, K., de Vaulx, F., Bojanova, I. (2016). Cyber-Physical-Human Systems: Putting People in the Loop. IT Professional, 18 (1), 10–13. doi: https://doi.org/10.1109/mitp.2016.14
  30. Smirnov, A., Shilov, N., Gusikhin, O. (2017). Cyber-physical-human system for connected car-based e-tourism: Approach and case study scenario. 2017 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA). doi: https://doi.org/10.1109/cogsima.2017.7929591
  31. Kumar, S. A. P., Bhargava, B., Macedo, R., Mani, G. (2017). Securing IoT-Based Cyber-Physical Human Systems against Collaborative Attacks. 2017 IEEE International Congress on Internet of Things (ICIOT). doi: https://doi.org/10.1109/ieee.iciot.2017.11
  32. Zhu, Y., Tan, Y., Li, R., Luo, X. (2015). Cyber-Physical-Social-Thinking Modeling and Computing for Geological Information Service System. 2015 International Conference on Identification, Information, and Knowledge in the Internet of Things (IIKI). doi: https://doi.org/10.1109/iiki.2015.48
  33. Kannisto, J., Makitalo, N., Aaltonen, T., Mikkonen, T. (2016). Programming Model Perspective on Security and Privacy of Social Cyber-physical Systems. 2016 IEEE International Conference on Mobile Services (MS). doi: https://doi.org/10.1109/mobserv.2016.23
  34. Xu, Q., Su, Z., Yu, S. (2018). Green Social CPS Based E-Healthcare Systems to Control the Spread of Infectious Diseases. 2018 IEEE International Conference on Communications (ICC). doi: https://doi.org/10.1109/icc.2018.8422421
  35. Rose, S., Borchert, O., Mitchell, S., Connelly, S. (2020). Zero Trust Architecture. NIST. doi: https://doi.org/10.6028/nist.sp.800-207
  36. Yevseiev, S., Tolkachov, M., Shetty, D., Khvostenko, V., Strelnikova, A., Milevskyi, S., Golovashych, S. (2023). The concept of building security of the network with elements of the semiotic approach. ScienceRise, 1, 24–34. doi: https://doi.org/10.21303/2313-8416.2023.002828
  37. Gilchrist, A. (2016). Industry 4.0. Apress Berkeley, 250. doi: https://doi.org/10.1007/978-1-4842-2047-4
  38. EFFRA. Factories of the Future: Multi-annual Roadmap for the Contractual PPP under Horizon 2020. European Commission. Available at: https://www.effra.eu/sites/default/files/factories_of_the_future_2020_roadmap.pdf
  39. Monostori, L. (2014). Cyber-physical Production Systems: Roots, Expectations and R&D Challenges. Procedia CIRP, 17, 9–13. doi: https://doi.org/10.1016/j.procir.2014.03.115
  40. Uhlemann, T. H.-J., Lehmann, C., Steinhilper, R. (2017). The Digital Twin: Realizing the Cyber-Physical Production System for Industry 4.0. Procedia CIRP, 61, 335–340. doi: https://doi.org/10.1016/j.procir.2016.11.152
  41. Kang, H. S., Lee, J. Y., Choi, S., Kim, H., Park, J. H., Son, J. Y. et al. (2016). Smart manufacturing: Past research, present findings, and future directions. International Journal of Precision Engineering and Manufacturing-Green Technology, 3 (1), 111–128. doi: https://doi.org/10.1007/s40684-016-0015-5
  42. Sniderman, B., Mahto, M., Cotteleer, M. J. (2016). Industry 4.0 and Manufacturing Ecosystems – Exploring the World of Connected Enterprises. Deloitte University Press. Available at: https://www2.deloitte.com/content/dam/insights/us/articles/manufacturing-ecosystems-exploring-world-connected-enterprises/DUP_2898_Industry4.0ManufacturingEcosystems.pdf
  43. Hermann, M., Pentek, T., Otto, B. (2016). Design Principles for Industrie 4.0 Scenarios. 2016 49th Hawaii International Conference on System Sciences (HICSS). doi: https://doi.org/10.1109/hicss.2016.488
  44. Goldstein, J. A., Sastry, G., Musser, M., DiResta, R., Gentzel, M., Sedova, K. (2023). Forecasting potential misuses of language models for disinformation campaigns—and how to reduce risk. Stanford. Available at: https://cyber.fsi.stanford.edu/io/news/forecasting-potential-misuses-language-models-disinformation-campaigns-and-how-reduce-risk
  45. Kato, T., Kudo, Y., Miyakoshi, J., Otsuka, J., Saigo, H., Karasawa, K. et al. (2020). Rational Choice Hypothesis as X-point of Utility Function and Norm Function. Applied Economics and Finance, 7 (4), 63. doi: https://doi.org/10.11114/aef.v7i4.4890
  46. Heath, J. (2008). Following the Rules: Practical Reasoning and Deontic Constraint. Oxford University Press. doi: https://doi.org/10.1093/acprof:oso/9780195370294.001.0001
  47. Yevseiev, S., Melenti, Y., Voitko, O., Hrebeniuk, V., Korchenko, A., Mykus, S., Milov, O. et al. (2021). Development of a concept for building a critical infrastructure facilities security system. Eastern-European Journal of Enterprise Technologies, 3 (9 (111)), 63–83. doi: https://doi.org/10.15587/1729-4061.2021.233533
  48. Androshchuk, А., Yevseiev, S., Melenchuk, V., Lemeshko, O., Lemeshko, V. (2020). Improvement of project risk assessment methods of implementation of automated information components of non-commercial organizational and technical systems. EUREKA: Physics and Engineering, 1, 48–55. doi: https://doi.org/10.21303/2461-4262.2020.001131
  49. Yevseiev, S., Ponomarenko, V., Laptiev, O., Milov, O., Korol, O., Milevskyi, S. et. al.; Yevseiev, S., Ponomarenko, V., Laptiev, O., Milov, O. (Eds.) (2021). Synergy of building cybersecurity systems. Kharkiv: РС ТЕСHNOLOGY СЕNTЕR, 188. doi: https://doi.org/10.15587/978-617-7319-31-2
  50. Yevseiev, S., Hryshchuk, R., Molodetska, K., Nazarkevych, M., Hrytsyk, V., Milov, O. et. al.; Yevseiev, S., Hryshchuk, R., Molodetska, K., Nazarkevych, M. (Eds.) (2022). Modeling of security systems for critical infrastructure facilities. Kharkiv: РС ТЕСHNOLOGY СЕNTЕR, 196. doi: https://doi.org/10.15587/978-617-7319-57-2
  51. Yevseiev, S., Khokhlachova, Yu., Ostapov, S., Laptiev, O., Korol, O., Milevskyi, S. et. al.; Yevseiev, S., Khokhlachova, Yu., Ostapov, S., Laptiev, O. (Eds.) (2023). Models of socio-cyber-physical systems security. Kharkiv: РС ТЕСHNOLOGY СЕNTЕR, 184. doi: https://doi.org/10.15587/978-617-7319-72-5
  52. Shmatko, O., Balakireva, S., Vlasov, A., Zagorodna, N., Korol, O., Milov, O. et al. (2020). Development of methodological foundations for designing a classifier of threats to cyberphysical systems. Eastern-European Journal of Enterprise Technologies, 3 (9 (105)), 6–19. doi: https://doi.org/10.15587/1729-4061.2020.205702
  53. Angiulli, F., Fassetti, F., Serrao, C. (2023). Anomaly detection with correlation laws. Data & Knowledge Engineering, 145, 102181. doi: https://doi.org/10.1016/j.datak.2023.102181
  54. Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences, 99, 7280–7287. doi: https://doi.org/10.1073/pnas.082080899
  55. Macal, C. M. (2016). Everything you need to know about agent-based modelling and simulation. Journal of Simulation, 10 (2), 144–156. doi: https://doi.org/10.1057/jos.2016.7
  56. Walker, J. J. (2012). Cyber security concerns for emergency management. Emergency Management. doi: https://doi.org/10.5772/34104
  57. Ali, N. S. (2016). A four-phase methodology for protecting web applications using an effective real-time technique. International Journal of Internet Technology and Secured Transactions, 6 (4), 303. doi: https://doi.org/10.1504/ijitst.2016.10003854
  58. Park, K.-J., Zheng, R., Liu, X. (2012). Cyber-physical systems: Milestones and research challenges. Computer Communications, 36 (1), 1–7. doi: https://doi.org/10.1016/j.comcom.2012.09.006
  59. Hansman, S., Hunt, R. (2005). A taxonomy of network and computer attacks. Computers & Security, 24 (1), 31–43. doi: https://doi.org/10.1016/j.cose.2004.06.011
  60. Goel, S., Chen, V. (2005). Information security risk analysis – a matrix-based approach. Proceedings of the Information Resource Management Association (IRMA) International Conference. San Diego. Available at: https://www.albany.edu/~GOEL/publications/goelchen2005.pdf
  61. Kjaerland, M. (2006). A taxonomy and comparison of computer security incidents from the commercial and government sectors. Computers & Security, 25 (7), 522–538. doi: https://doi.org/10.1016/j.cose.2006.08.004
  62. Blackwell, C. (2010). A security ontology for incident analysis. Proceedings of the Sixth Annual Workshop on Cyber Security and Information Intelligence Research. doi: https://doi.org/10.1145/1852666.1852717
  63. Ahmad, R., Yunos, Z. (2012). A dynamic cyber terrorism framework. International Journal of Computer Science and Information Security, 10 (2), 149–158.
  64. Judіn, O. K. (2015). Derzhavnі іnformacіynі resursi [State information resources]. Metodologіya pobudovi klasifіkatora zagroz. Kyiv: NAU, 214.
  65. Sznajd-Weron, K., Sznajd, J. (2000). Opinion evolution in closed community. International Journal of Modern Physics C, 11 (06), 1157–1165. doi: https://doi.org/10.1142/s0129183100000936
  66. Deffuant, G., Neau, D., Amblard, F., Weisbuch, G. (2000). Mixing beliefs among interacting agents. Advances in Complex Systems, 03, 87–98. doi: https://doi.org/10.1142/s0219525900000078
  67. Hegselmann, R., Krause, U. (2002). Opinion dynamics and bounded confidence: Models, analysis and simulation. Journal of Artificial Societies and Social Simulation, 5 (3). Available at: https://www.jasss.org/5/3/2.html
  68. Weimer, C. W., Miller, J. O., Hill, R. R. (2016). Agent-based modeling: An introduction and primer. 2016 Winter Simulation Conference (WSC). doi: https://doi.org/10.1109/wsc.2016.7822080
Створення багатоконтурної системи безпеки інформаційних взаємодій у соціокиберфізичних системах

##submission.downloads##

Опубліковано

2023-10-31

Як цитувати

Євсеєв, С. П., Дженюк, Н. В., Толкачов, М. Ю., Мілов, О. В., Войтко, Т. М., Пригара, М. П., Шпак, О. І., Воропай, Н. І., Волков, А. Ф., & Лезік, О. В. (2023). Створення багатоконтурної системи безпеки інформаційних взаємодій у соціокиберфізичних системах. Eastern-European Journal of Enterprise Technologies, 5(9 (125), 53–74. https://doi.org/10.15587/1729-4061.2023.289467

Номер

Розділ

Інформаційно-керуючі системи