Покращення роздільної здатності та чутливості ортогонального часопролітного мас-спектрометра з ортогональною інжекцією іонів

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2023.290649

Ключові слова:

часопролітний мас-спектрометр, циліндрична імерсійна лінза, трансаксіальне електронне дзеркало, генератор імпульсів, час обертання

Анотація

Розглянуто теоретичні можливості підвищення роздільної здатності та чутливості часопролітного мас-спектрометра з ортогональною інжекцією іонів. Ефекти досягаються за рахунок використання неоднорідних електростатичних полів спеціальної конфігурації як у прискорювальній, так і в фокусуючій частинах приладу – циліндричному імерсійному об’єктиві та трансаксіальному дзеркалі відповідно. Показано, що використання неоднорідного циліндричного поля спеціальної конфігурації як прискорювача іонів відкриває можливість багаторазового зменшення енергетичного розкиду іонів в пакетах інжектованих іонів, пов’язаного з так званим «часом обертання» і , отже, значне (в два і більше разів) збільшення граничної роздільної здатності мас-спектрометра. Використання трансаксіального електростатичного дзеркала як часопролітного мас-аналізатора дозволяє значно підвищити чутливість мас-спектрометра за рахунок реалізації потрійного просторово-часопролітного фокусування пакетів іонів. Основні особливості включають зменшений розкид енергії іонів, підвищену максимальну роздільну здатність і покращену чутливість завдяки потрійному фокусуванню в просторі та часі польоту. Це дослідження закладає основу для розширення можливостей часопролітної мас-спектрометрії, надаючи більш ефективний і потужний інструмент для широкого спектру наукових і промислових застосувань. Ефекти досягаються за рахунок використання неоднорідних електростатичних полів спеціальної конфігурації як в прискорювальній, так і в фокусуючій частинах приладу – циліндричної імерсійної лінзи та трансаксіального дзеркала відповідно. Наведено чисельні розрахунки системи – чотириелектродної циліндричної імерсійної лінзи в поєднанні з триелектродним трансаксіальним дзеркалом, які підтверджують висновки теорії

Біографії авторів

Seitkerim Bimurzaev, Almaty University of Power Engineering and Telecommunications

Professor

Department of Space Engineering and Technology

Nakhypbek Aldiyarov, Satbayev University

Candidate of Physical and Mathematical Sciences

Department of Automation and Information Technology

Yerkin Yerzhigitov, Kazakh National Agrarian Research University

Associate Professor

Department of Information Communication Technologies

Akmaral Tlenshiyeva, Academy of Logistic and Transport

Senior Lector

Department of Information Communication Technologies

Ruslan Kassym, Academy of Logistic and Transport

Supervisor Project

Department Information Communication Technologies

Посилання

  1. Chen, Y. H., Gonin, M., Fuhrer, K., Dodonov, A., Su, C. S., Wollnik, H. (1999). Orthogonal electron impact source for a time-of-flight mass spectrometer with high mass resolving power. International Journal of Mass Spectrometry, 185-187, 221–226. doi: https://doi.org/10.1016/s1387-3806(98)14152-0
  2. Pomozov, T. V., Yavor, M. I., Verentchikov, A. N. (2012). Reflectrons with ion orthogonal acceleration based on planar gridless mirrors. Technical Physics, 57 (4), 550–555. doi: https://doi.org/10.1134/s106378421204024x
  3. Bimurzaev, S. B. (2019). Planar multi-reflecting time-of-flight mass-spectrometer of a simple design. Advances in Imaging and Electron Physics, 3–13. doi: https://doi.org/10.1016/bs.aiep.2019.08.001
  4. Mamyrin, B. A. (2001). Time-of-flight mass spectrometry (concepts, achievements, and prospects). International Journal of Mass Spectrometry, 206 (3), 251–266. doi: https://doi.org/10.1016/s1387-3806(00)00392-4
  5. Golikov, Yu. K., Krasnov, N. V., Bublyaev, R. A., Turtia, S. B., Belyaev, K. A. (2008). Monopole as an orthogonal accelerator TOF analyzer. Nauchnoje Priborostroenie, 18 (4), 97–103.
  6. Bimurzaev, S. B., Bimurzaeva, R. S., Sarkeev, B. T. (1991). Spatial-TOF focusing in an electrostatic lens-mirror system with two planes of symmetry. Radiotekhnika I Elektronika, 36, 2186–2195.
  7. Yakushev, E. M., Sekunova, L. M. (1986). Theory of Electron Mirrors and Cathode Lenses. Advances in Electronics and Electron Physics, 337–416. doi: https://doi.org/10.1016/s0065-2539(08)60856-2
  8. Nevinnyi, Yu. A., Sekunova, L. M., Yakushev, E. M. (1985). Transaxial lens systems for electrostatic prism spectrometers with improved focusing. Zhurnal Tekhnicheskoi Fiziki, 55 (9), 1713–1718.
  9. Bimurzaev, S. B. (2015). A TOF mass spectrometer with higher resolution and sensitivity via elimination of chromatic TOF aberrations of higher orders. International Journal of Mass Spectrometry, 376, 23–26. doi: https://doi.org/10.1016/j.ijms.2014.11.007
  10. Bimurzaev, S. B., Aldiyarov, N. U. (2014). Time-of-Flight Mass Spectrometer with Transaxial Ion Reflector. Journal of Modern Physics, 05 (01), 68–73. doi: https://doi.org/10.4236/jmp.2014.51011
  11. Yakushev, E. M. (2013). Theory and Computation of Electron Mirrors. Advances in Imaging and Electron Physics, 147–247. doi: https://doi.org/10.1016/b978-0-12-407701-0.00003-0
  12. Karetskaya, S. P., Saichenko, N. Yu. (1989). Four-electrode mirror with a two-dimensional electric field. Zhurnal Tekhnicheskoi Fiziki, 59 (10), 98–103.
  13. Utegenova, A., Bapyshev, A., Suimenbayeva, Z., Aden, A., Kassym, R., Tansaule, S. (2023). Development system for coordination of activities of experts in the formation of machineschetable standards in the field of military and space activities based on ontological engineering: a case study. Eastern-European Journal of Enterprise Technologies, 5 (2 (125)), 67–77. doi: https://doi.org/10.15587/1729-4061.2023.288542
  14. Tikkisetty, K., Filewood, T., Yan, J., Kwok, H., Brunswick, P., Cody, R., Shang, D. (2023). Method development for forensic oil identification by direct analysis in real time time-of-flight mass spectrometry. Analytical Methods, 15 (44), 6040–6047. doi: https://doi.org/10.1039/d3ay01282d
  15. Baibolov, A., Sydykov, S., Alibek, N., Tokmoldayev, A., Turdybek, B., Jurado, F., Kassym, R. (2022). Map of zoning of the territory of Kazakhstan by the average temperature of the heating period in order to select a heat pump system of heat supply: A case study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44 (3), 7303–7315. doi: https://doi.org/10.1080/15567036.2022.2108168
  16. Cooper-Shepherd, D. A., Wildgoose, J., Kozlov, B., Johnson, W. J., Tyldesley-Worster, R., Palmer, M. E. et al. (2023). Novel Hybrid Quadrupole-Multireflecting Time-of-Flight Mass Spectrometry System. Journal of the American Society for Mass Spectrometry, 34 (2), 264–272. doi: https://doi.org/10.1021/jasms.2c00281
  17. Kassym, R. T., Taldybayeva, A. S., Omar, D. R., Alibek, N. B., Kuder, K. M., Isakhanov, M. Z., Omarov, R. A. (2021). Experimental results of functional characteristics of IOT for free range sheep breeding. International Journal of Agricultural Resources, Governance and Ecology, 17 (2/4), 1. doi: https://doi.org/10.1504/ijarge.2021.10044149
  18. Mohamed, N. A., Hasanien, H. M., Alkuhayli, A., Akmaral, T., Jurado, F., Badr, A. O. (2023). Hybrid Particle Swarm and Gravitational Search Algorithm-Based Optimal Fractional Order PID Control Scheme for Performance Enhancement of Offshore Wind Farms. Sustainability, 15 (15), 11912. doi: https://doi.org/10.3390/su151511912
  19. Hashish, M. S., Hasanien, H. M., Ji, H., Alkuhayli, A., Alharbi, M., Akmaral, T. et al. (2023). Monte Carlo Simulation and a Clustering Technique for Solving the Probabilistic Optimal Power Flow Problem for Hybrid Renewable Energy Systems. Sustainability, 15 (1), 783. doi: https://doi.org/10.3390/su15010783
  20. Bimurzaev, S., Sautbekov, S., Sautbekova, Z. (2023). Calculation of the Electrostatic Field of a Circular Cylinder with a Slot by the Wiener–Hopf Method. Mathematics, 11 (13), 2933. doi: https://doi.org/10.3390/math11132933
  21. Bimurzaev, S. B., Yakushev, E. M. (2022). Relativistic theory of aberrations of electrostatic electron-optical systems. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1022, 165956. doi: https://doi.org/10.1016/j.nima.2021.165956
  22. Bimurzaev, S. B., Yakushev, E. M. (2021). Theory and Calculation of Electrostatic Electron Mirrors with Allowance for Relativistic Effects. Technical Physics, 66 (5), 690–698. doi: https://doi.org/10.1134/s1063784221050054
  23. Vestal, M., Li, L., Dobrinskikh, E., Shi, Y., Wang, B., Shi, X. et al. (2019). Rapid MALDI‐TOF molecular imaging: Instrument enhancements and their practical consequences. Journal of Mass Spectrometry, 55 (8). doi: https://doi.org/10.1002/jms.4423
  24. Willis, P., Jaloszynski, J., Artaev, V. (2021). Improving duty cycle in the Folded Flight Path high-resolution time-of-flight mass spectrometer. International Journal of Mass Spectrometry, 459, 116467. doi: https://doi.org/10.1016/j.ijms.2020.116467
  25. Plumb, R. S., McDonald, T., Rainville, P. D., Hill, J., Gethings, L. A., Johnson, K. A., Wilson, I. D. (2021). High-Throughput UHPLC/MS/MS-Based Metabolic Profiling Using a Vacuum Jacketed Column. Analytical Chemistry, 93 (30), 10644–10652. doi: https://doi.org/10.1021/acs.analchem.1c01982
  26. Amaral, M. S. S., Nolvachai, Y., Marriott, P. J. (2019). Comprehensive Two-Dimensional Gas Chromatography Advances in Technology and Applications: Biennial Update. Analytical Chemistry, 92 (1), 85–104. doi: https://doi.org/10.1021/acs.analchem.9b05412
  27. Giles, K., Ujma, J., Wildgoose, J., Pringle, S., Richardson, K., Langridge, D., Green, M. (2019). A Cyclic Ion Mobility-Mass Spectrometry System. Analytical Chemistry, 91 (13), 8564–8573. doi: https://doi.org/10.1021/acs.analchem.9b01838
  28. Yavor, M. I., Verenchikov, A. N., Guluev, R. G. (2019). Cylindrical sector field multi-turn time-of-flight mass analyzer with second order focusing. International Journal of Mass Spectrometry, 442, 58–63. doi: https://doi.org/10.1016/j.ijms.2019.05.007
  29. Richardson, K., Hoyes, J. (2015). A novel multipass oa-TOF mass spectrometer. International Journal of Mass Spectrometry, 377, 309–315. doi: https://doi.org/10.1016/j.ijms.2014.08.031
  30. Rose, T., Appleby, R. B., Nixon, P., Richardson, K., Green, M. (2020). Segmented electrostatic trap with inductive, frequency based, mass-to-charge ion determination. International Journal of Mass Spectrometry, 450, 116304. doi: https://doi.org/10.1016/j.ijms.2020.116304
  31. Buchberger, A. R., DeLaney, K., Johnson, J., Li, L. (2017). Mass Spectrometry Imaging: A Review of Emerging Advancements and Future Insights. Analytical Chemistry, 90 (1), 240–265. doi: https://doi.org/10.1021/acs.analchem.7b04733
  32. Ferey, J., Larroque, M., Schmitz-Afonso, I., Le Maître, J., Sgarbura, O., Carrere, S. et al. (2022). Imaging Matrix-Assisted Laser Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry of oxaliplatin derivatives in human tissue sections. Talanta, 237, 122915. doi: https://doi.org/10.1016/j.talanta.2021.122915
  33. Vandergrift, G. W., Kew, W., Lukowski, J. K., Bhattacharjee, A., Liyu, A. V., Shank, E. A. et al. (2022). Imaging and Direct Sampling Capabilities of Nanospray Desorption Electrospray Ionization with Absorption-Mode 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Analytical Chemistry, 94 (8), 3629–3636. doi: https://doi.org/10.1021/acs.analchem.1c05216
Покращення роздільної здатності та чутливості ортогонального часопролітного мас-спектрометра з ортогональною інжекцією іонів

##submission.downloads##

Опубліковано

2023-12-29

Як цитувати

Bimurzaev, S., Aldiyarov, N., Yerzhigitov, Y., Tlenshiyeva, A., & Kassym, R. (2023). Покращення роздільної здатності та чутливості ортогонального часопролітного мас-спектрометра з ортогональною інжекцією іонів. Eastern-European Journal of Enterprise Technologies, 6(5 (126), 43–53. https://doi.org/10.15587/1729-4061.2023.290649

Номер

Розділ

Прикладна фізика