Оцінка впливу дисперсійних частинок у воді оборотної системи охолодження електростанції на скид завислих речовин у природну водойму

Автор(и)

  • Павло Миколайович Кузнєцов Національний університет водного господарства та природокористування, Україна https://orcid.org/0000-0002-8263-0000
  • Ольга Олександрівна Бєдункова Національний університет водного господарства та природокористування, Україна https://orcid.org/0000-0003-4356-4124

DOI:

https://doi.org/10.15587/1729-4061.2023.292879

Ключові слова:

скидні зворотні води, гранулометричний та хімічний склад, завислі речовини

Анотація

Об’єктом  дослідження є процеси формування та змін дисперсних частинок в свіжій, додатковій, охолоджуючій та зворотній воді відкритих оборотних систем охолодження (ОСО) з оцінкою впливу завислих речовин у скидних водах на водну екосистему. Дослідження проведені на прикладі Рівненської атомної електростанції (РАЕС) та річки Стир. Дисперсійні частинки (ДЧ) чинять технологічні перешкоди в ОСО електростанцій, а їх вміст у скидних водах визначає екологічну якість водних об'єктів. Стаття описує результати дослідження формування та змін ДЧ в сирій, додатковій, охолоджуючій та зворотній водах  ОСО РАЕС з оцінкою впливу завислих речовин у скидних водах на водну екосистему річки Стир. З’ясовано, що утворені дисперсійні частинки після водопідготовки вапнуванням містять ДЧ, що складається з карбонату кальцію та мають розмір 10–30 мкм. Внаслідок агломерації ДЧ в ОСО укрупнюються до 120–150 мкм, та через низьку седиментаційну стійкість (час осадження 0,97 год.), осаджуються в ОСО. Внаслідок осадження ДЧ в ОСО спостерігається їх істотне зниження в зворотній воді (min–max=7,31–16,12 мг/дм3), не дивлячись на збільшення їх вмісту в додатковій воді після водопідготовки (min–max=10,22–49,46 мг/дм3). Відповідно до екологічної класифікації, за вмістом завислих речовин вода р. Стир у зоні впливу скидів РАЕС відноситься до ІІ класу, 2 категорії, що характеризує якість води за станом як «дуже добра», за ступенем чистоти «чиста». Зроблено висновок, що вміст завислих речовин не перевищує встановлені гранично-допустимі концентрації (25 мг/дм3), приріст концентрації завислих речовин не перевищує встановлений екологічний норматив 0,25 мг/дм3 та не чинить негативний вплив на поверхневі води. Результати дослідження можуть бути використані для інших електростанцій, що мають відкриту ОСО

Біографії авторів

Павло Миколайович Кузнєцов, Національний університет водного господарства та природокористування

Аспірант

Кафедра екології, технології захисту навколишнього середовища та лісового господарства

Ольга Олександрівна Бєдункова, Національний університет водного господарства та природокористування

Доктор біологічних наук, професор

Кафедра екології, технології захисту навколишнього середовища та лісового господарства

Посилання

  1. Kuznietsov, P., Tykhomyrov, A., Biedunkova, O., Zaitsev, S. (2022). Improvement of methods for controlling power oil of cooling tower recycling water supply units at Rivne nuclear power plant. Scientific Horizons, 25 (12). doi: https://doi.org/10.48077/scihor.25(12).2022.69-79
  2. Kuznietsov, P., Biedunkova, O. (2023). Experimental Tests of Biocidal Treatment for Cooling Water of Safety Systems at Rivne NPP Units. Nuclear and Radiation Safety, 1 (97), 30–40. doi: https://doi.org/10.32918/nrs.2023.1(97).04
  3. Rajaković-Ognjanović, V. N., Živojinovic, D. Z., Grgur, B. N., Rajaković, L. V. (2011). Improvement of chemical control in the water-steam cycle of thermal power plants. Applied Thermal Engineering, 31 (1), 119–128. doi: https://doi.org/10.1016/j.applthermaleng.2010.08.028
  4. Liang, B., Bai, H., Bai, D., Liu, X. (2022). Emissions of non-methane hydrocarbons and typical volatile organic compounds from various grate-firing coal furnaces. Atmospheric Pollution Research, 13 (4), 101380. doi: https://doi.org/10.1016/j.apr.2022.101380
  5. Beyene, A., Kothari, D., Subbarao, P. M. V. (2021). Power Generation. Springer Handbooks, 1223–1271. doi: https://doi.org/10.1007/978-3-030-47035-7_27
  6. Zhang, S., Yang, Z., Ling, S., Li, L. (2022). Research and application of system monitoring technology in nuclear power plants. 2nd International Conference on Mechanical, Electronics, and Electrical and Automation Control (METMS 2022). doi: https://doi.org/10.1117/12.2634879
  7. Kuznietsov, P. N., Biedunkova, O. О., Yaroshchuk, O. V. (2023). Experimental study of transformation of carbonate system components cooling water of rivne nuclear power plant during water treatment by liming. Problems of Atomic Science and Technology, 69–73. doi: https://doi.org/10.46813/2023-144-069
  8. Choudhury, M. R., Siddik, Md. A. Z., Salam, Md. Z. E. I. (2015). Use of Shitalakhya River Water as makeup water in power plant cooling system. KSCE Journal of Civil Engineering, 20 (2), 571–580. doi: https://doi.org/10.1007/s12205-015-1369-x
  9. Pan, S.-Y., Snyder, S. W., Packman, A. I., Lin, Y. J., Chiang, P.-C. (2018). Cooling water use in thermoelectric power generation and its associated challenges for addressing water-energy nexus. Water-Energy Nexus, 1 (1), 26–41. doi: https://doi.org/10.1016/j.wen.2018.04.002
  10. Badruzzaman, M., Anazi, J. R., Al-Wohaib, F. A., Al-Malki, A. A., Jutail, F. (2022). Municipal reclaimed water as makeup water for cooling systems: Water efficiency, biohazards, and reliability. Water Resources and Industry, 28, 100188. doi: https://doi.org/10.1016/j.wri.2022.100188
  11. Walker, M. E., Safari, I., Theregowda, R. B., Hsieh, M.-K., Abbasian, J., Arastoopour, H. et al. (2012). Economic impact of condenser fouling in existing thermoelectric power plants. Energy, 44 (1), 429–437. doi: https://doi.org/10.1016/j.energy.2012.06.010
  12. Zhang, S., Ding, J., Tian, D., Chang, M., Zhao, X., Lu, M. (2023). Experimental and theoretical studies of fluorescent-tagged scale inhibitors for calcium scale inhibition. Journal of Molecular Structure, 1272, 134157. doi: https://doi.org/10.1016/j.molstruc.2022.134157
  13. Ji-jiang, G., Yang, W., Gui-cai, Z., Ping, J., Mingqin, S. (2016). Investigation of Scale Inhibition Mechanisms Based on the Effect of HEDP on Surface Charge of Calcium Carbonate. Tenside Surfactants Detergents, 53 (1), 29–36. doi: https://doi.org/10.3139/113.110407
  14. Rodríguez, M. A. (2020). Corrosion control of nuclear steam generators under normal operation and plant-outage conditions: a review. Corrosion Reviews, 38 (3), 195–230. doi: https://doi.org/10.1515/corrrev-2020-0015
  15. Ding, G. K. C. (2017). Wastewater Treatment and Reuse—The Future Source of Water Supply. Encyclopedia of Sustainable Technologies, 43–52. doi: https://doi.org/10.1016/b978-0-12-409548-9.10170-8
  16. Ahfir, N.-D., Wang, H. Q., Benamar, A., Alem, A., Massei, N., Dupont, J.-P. (2006). Transport and deposition of suspended particles in saturated porous media: hydrodynamic effect. Hydrogeology Journal, 15 (4), 659–668. doi: https://doi.org/10.1007/s10040-006-0131-3
  17. Ahfir, N.-D., Benamar, A., Alem, A., Wang, H. (2008). Influence of Internal Structure and Medium Length on Transport and Deposition of Suspended Particles: A Laboratory Study. Transport in Porous Media, 76 (2), 289–307. doi: https://doi.org/10.1007/s11242-008-9247-3
  18. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. URL: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32000L0060
  19. Pro zatverdzhennia Hihienichnykh normatyviv yakosti vody vodnykh obiektiv dlia zadovolennia pytnykh, hospodarsko-pobutovykh ta inshykh potreb naselennia. Zareiestrovano v Ministerstvi yustytsiyi Ukrainy 16 travnia 2022 r. za No. 524/37860. URL: https://zakon.rada.gov.ua/laws/show/z0524-22#Text
  20. Perelik hranychno dopustymykh kontsentratsii ta orientovnykh bezpechnykh rivniv vplyvu shkidlyvykh rechovyn dlia vody rybohospodarskykh vodoim (1990). Zatverdzheno Holovrybvodom Minrybhospu SRSR 09.08.1990 No. 12-04-11.
  21. Soon, Z. Y., Kim, T., Jung, J.-H., Kim, M. (2023). Metals and suspended solids in the effluents from in-water hull cleaning by remotely operated vehicle (ROV): Concentrations and release rates into the marine environment. Journal of Hazardous Materials, 460, 132456. doi: https://doi.org/10.1016/j.jhazmat.2023.132456
  22. Cheers, M. S., Ettensohn, C. A. (2004). Rapid Microinjection of Fertilized Eggs. Development of Sea Urchins, Ascidians, and Other Invertebrate Deuterostomes: Experimental Approaches, 287–310. doi: https://doi.org/10.1016/s0091-679x(04)74013-3
  23. von Sperling, E. (2012). Hydropower in Brazil: Overview of Positive and Negative Environmental Aspects. Energy Procedia, 18, 110–118. doi: https://doi.org/10.1016/j.egypro.2012.05.023
  24. Padmalal, D., Maya, K. (2014). Impacts of River Sand Mining. Sand Mining, 31–56. doi: https://doi.org/10.1007/978-94-017-9144-1_4
  25. Alsadaie, S., Mujtaba, I. M. (2019). Crystallization of calcium carbonate and magnesium hydroxide in the heat exchangers of once-through Multistage Flash (MSF-OT) desalination process. Computers & Chemical Engineering, 122, 293–305. doi: https://doi.org/10.1016/j.compchemeng.2018.08.033
  26. Muniz, G. L., Camargo, A. P., Signorelli, F., Bertran, C. A., Pereira, D. J. S., Frizzone, J. A. (2022). Influence of suspended solid particles on calcium carbonate fouling in dripper labyrinths. Agricultural Water Management, 273, 107890. doi: https://doi.org/10.1016/j.agwat.2022.107890
  27. Zuo, Z., Yang, W., Zhang, K., Chen, Y., Li, M., Zuo, Y. et al. (2020). Effect of scale inhibitors on the structure and morphology of CaCO3 crystal electrochemically deposited on TA1 alloy. Journal of Colloid and Interface Science, 562, 558–566. doi: https://doi.org/10.1016/j.jcis.2019.11.078
  28. Lioliou, M. G., Paraskeva, C. A., Koutsoukos, P. G., Payatakes, A. C. (2007). Heterogeneous nucleation and growth of calcium carbonate on calcite and quartz. Journal of Colloid and Interface Science, 308 (2), 421–428. doi: https://doi.org/10.1016/j.jcis.2006.12.045
  29. van der Weijden, C. H., van der Weijden, R. D. (2014). Calcite growth: Rate dependence on saturation, on ratios of dissolved calcium and (bi)carbonate and on their complexes. Journal of Crystal Growth, 394, 137–144. doi: https://doi.org/10.1016/j.jcrysgro.2014.02.042
  30. Klimuk, V., Tarasova, A., Yulia, K., Laura, D. (2020). Synergistic interaction of education, science, and industry. Leadership, Education, Personality: An Interdisciplinary Journal, 2 (1), 53–58. doi: https://doi.org/10.1365/s42681-020-00009-y
  31. Varnaseri, M., Peyghambarzadeh, S. M. (2022). Interference effect of suspended particles on the crystallization fouling: A critical review. Heat and Mass Transfer, 59 (4), 655–680. doi: https://doi.org/10.1007/s00231-022-03285-0
  32. Kuznietsov, P., Biedunkova, O. (2023). Technological and Environmental Problems in the Stabilization Treatment of the Main Condenser Cooling Circuit by Sulfuric Acid. Journal of Engineering Sciences, 10 (2), H1–H8. doi: https://doi.org/10.21272/jes.2023.10(2).h1
  33. Li, J., How, Z. T., Benally, C., Sun, Y., Zeng, H., Gamal El-Din, M. (2023). Removal of colloidal impurities by thermal softening-coagulation-flocculation-sedimentation in steam assisted gravity drainage (SAGD) produced water: Performance, interaction effects and mechanism study. Separation and Purification Technology, 313, 123484. doi: https://doi.org/10.1016/j.seppur.2023.123484
  34. Vahedi, A., Gorczyca, B. (2011). Application of fractal dimensions to study the structure of flocs formed in lime softening process. Water Research, 45 (2), 545–556. doi: https://doi.org/10.1016/j.watres.2010.09.014
  35. Elduayen-Echave, B., Azcona, M., Grau, P., Schneider, P. A. (2020). Effect of the shear rate and supersaturation on the nucleation and growth of struvite in batch stirred tank reactors. Journal of Water Process Engineering, 38, 101657. doi: https://doi.org/10.1016/j.jwpe.2020.101657
  36. Huppert, H. E., Turner, J. S., Hallworth, M. A. (1995). Sedimentation and entrainment in dense layers of suspended particles stirred by an oscillating grid. Journal of Fluid Mechanics, 289, 263–293. doi: https://doi.org/10.1017/s0022112095001339
  37. Richey, J. E., Hedges, J. I., Devol, A. H., Quay, P. D., Victoria, R., Martinelli, L., Forsberg, B. R. (1990). Biogeochemistry of carbon in the Amazon River. Limnology and Oceanography, 35 (2), 352–371. doi: https://doi.org/10.4319/lo.1990.35.2.0352
  38. Marinho, R. R., Filizola Junior, N. P., Cremon, É. H. (2020). Analysis of Suspended Sediment in the Anavilhanas Archipelago, Rio Negro, Amazon Basin. Water, 12 (4), 1073. doi: https://doi.org/10.3390/w12041073
  39. Bilotta, G. S., Brazier, R. E. (2008). Understanding the influence of suspended solids on water quality and aquatic biota. Water Research, 42 (12), 2849–2861. doi: https://doi.org/10.1016/j.watres.2008.03.018
  40. HKD 34.37.304-2003. Kontrol stanu osnovnoho obladnannia elektrostantsiy. Vyznachennia khimichnoho skladu vidkladen. Metodychni vkazivky.
  41. Bychkov, S., Dolgal, A., Simanov, A. (2021). Interpretation of Gravity Monitoring Data on Geotechnical Impact on the Geological Environment. Pure and Applied Geophysics, 178 (1), 107–121. doi: https://doi.org/10.1007/s00024-020-02640-8
  42. KND 211.1.4.039-95. Metodyka hravimetrychnoho vyznachennia zavyslykh (suspendovanykh) rechovyn v pryrodnykh i stichnykh vodakh.
  43. Romanenko, V. D., Zhukynskyi, V. M., Oksiiuk, O. P., Yatsyk, A. V. Et al. (1998). Metodyka ekolohichnoi otsinky yakosti poverkhnevykh vod za vidpovidnymy katehoriyamy. Kyiv: Symvol-T, 28.
  44. Dozvil na spetsvodokorystuvannia VP Rivnenskoi AES # 53/RV/49d-20.
  45. Kuznietsov, P. M., Biedunkova, O. O. (2023). The formation of the carbonate system of circulating cooling water of the Rivne NPP and its influence on changes in the surface waters pH levels of the Styr river. IOP Conference Series: Earth and Environmental Science, 1254 (1), 012102. doi: https://doi.org/10.1088/1755-1315/1254/1/012102
  46. Chemical discharges from nuclear power stations: historical releases and implications for Best Available Techniques. Report – SC090012/R1. URL: https://assets.publishing.service.gov.uk/media/5a74cc3140f0b619c865a83f/scho0911bubz-e-e.pdf
  47. Kuznietsov, P., Biedunkova, O., Trach, Y. (2023). Monitoring of Phosphorus Compounds in the Influence Zone Affected by Nuclear Power Plant Water Discharge in the Styr River (Western Ukraine): Case Study. Sustainability, 15 (23), 16316. doi: https://doi.org/10.3390/su152316316
  48. Kuznetsov, P. N., Tichomirov, A. U. (2017). Water-chemistry operating condition of the second circuit power units No. 1-4 Rivne NPP with ethanolamine`s corrective treatment. Problems of Atomic Science and Technology, 2, 109–113.
Оцінка впливу дисперсійних частинок у воді оборотної системи охолодження електростанції на скид завислих речовин у природну водойму

##submission.downloads##

Опубліковано

2023-12-22

Як цитувати

Кузнєцов, П. М., & Бєдункова, О. О. (2023). Оцінка впливу дисперсійних частинок у воді оборотної системи охолодження електростанції на скид завислих речовин у природну водойму. Eastern-European Journal of Enterprise Technologies, 6(10 (126), 6–16. https://doi.org/10.15587/1729-4061.2023.292879

Номер

Розділ

Екологія