Визначення психо-емоційного стану спостереженого на основі аналізу відеоспостереження

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2024.296500

Ключові слова:

комп’ютерний зір, фізична агресія, емоційна реакція, булінг, модельне навчання, нейронна мережа

Анотація

У цій роботі розроблено систему визначення психоемоційного стану спостережуваних людей на основі аналізу відеоспостереження із застосуванням технології штучного інтелекту з використанням апаратно-програмних засобів, таких як PoseNet, PyTorch, SQLite, FastAPI та Flask. У багатьох сферах людської діяльності існує нагальна потреба в системі спостереження, яка могла б надійно функціонувати та виявляти підозрілу діяльність. Щоб вирішити цю проблему, у цій статті пропонується нова основа для системи спостереження в реальному часі, яка автоматично виявляє аномальну діяльність людини.

Система була протестована та перевірена в реальних умовах. Найкращі результати показали результати тестування програмних моделей штучного інтелекту (оцінка f1 зі значеннями 0,98–0,99). Середньозважене значення метрики f1-score становило 0,96, що є досить високим значенням. Використання PoseNet, реалізованого за допомогою PyTorch, дозволило нам точно визначити позу людини на відео та отримати інформацію про положення різних частин тіла. Особливість роботи полягає в розробці моделей штучного інтелекту для автоматичного виявлення можливої фізичної агресії на відео, в методах формування оптимального набору ознак для розробки моделей ШІ, які ідентифікують агресора та жертву булінгу.

Розроблена система має потенціал бути корисним інструментом у різних сферах, таких як психологія, медицина, безпека та інших, де важливо аналізувати емоційний стан людей на основі їх фізичних проявів. Отримані прикладні результати можуть бути використані в навчальних закладах та сферах, де необхідний відеоаналіз

Біографії авторів

Yedilkhan Amirgaliyev, Institute of Information and Computational Technologies

Doctor of Technical Sciences, Professor, Chief Researcher, Head of Laboratory

Laboratory of Artificial Intelligence and Robotics

Iurii Krak, Taras Shevchenko National University of Kyiv

Doctor of Physical and Mathematical Sciences, Professor, Head of Department

Department of Theoretical Cybernetics

Indira Bukenova, Almaty Technological University

Master of Technical Sciences, Lecturer

Department of Information Systems

Bayan Kazangapova, Almaty Technological University

Associate Professor

Department of Technology

Gani Bukenov, Almaty Technological University

Master of Mathematics, Lecturer

Department of Information Systems

Посилання

  1. Bauman, S. (2016). Do We Need More Measures of Bullying? Journal of Adolescent Health, 59 (5), 487–488. https://doi.org/10.1016/j.jadohealth.2016.08.021
  2. Al-Nawashi, M., Al-Hazaimeh, O. M., Saraee, M. (2016). A novel framework for intelligent surveillance system based on abnormal human activity detection in academic environments. Neural Computing and Applications, 28 (S1), 565–572. https://doi.org/10.1007/s00521-016-2363-z
  3. Seldin, M., Yanez, C. (2019). Student Reports of Bullying: Results from the 2017 School Crime Supplement to the National Crime Victimization Survey. Web Tables. NCES 2019–054. National Center for Education Statistics. Available at: https://nces.ed.gov/pubs2019/2019054.pdf
  4. McCarthy, R. J., Elson, M. (2018). A Conceptual Review of Lab-Based Aggression Paradigms. Collabra: Psychology, 4 (1). https://doi.org/10.1525/collabra.104
  5. Parrott, D. J., Zeichner, A. (2002). Effects of alcohol and trait anger on physical aggression in men. Journal of Studies on Alcohol, 63 (2), 196–204. https://doi.org/10.15288/jsa.2002.63.196
  6. Allen, J. J., Anderson, C. A. (2017). Aggression and Violence: Definitions and Distinctions. The Wiley Handbook of Violence and Aggression, 1–14. https://doi.org/10.1002/9781119057574.whbva001
  7. Zhou, P., Ding, Q., Luo, H., Hou, X. (2018). Violence detection in surveillance video using low-level features. PLOS ONE, 13 (10), e0203668. https://doi.org/10.1371/journal.pone.0203668
  8. Hassner, T., Itcher, Y., Kliper-Gross, O. (2012). Violent flows: Real-time detection of violent crowd behavior. 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. https://doi.org/10.1109/cvprw.2012.6239348
  9. Ullah, F. U. M., Ullah, A., Muhammad, K., Haq, I. U., Baik, S. W. (2019). Violence Detection Using Spatiotemporal Features with 3D Convolutional Neural Network. Sensors, 19 (11), 2472. https://doi.org/10.3390/s19112472
  10. Amirgaliyev, Y. N., Bukenova, I. N., Bukenov, G. S., Kenshimov, C. A. (2023). Software solutions for the recognition violent movements by video. Bulletin of East Kazakhstan Technical University, 2, 31–42.
  11. Peixoto, B. M., Avila, S., Dias, Z., Rocha, A. (2018). Breaking down violence. Proceedings of the 13th International Conference on Availability, Reliability and Security. https://doi.org/10.1145/3230833.3232809
  12. Song, D., Kim, C., Park, S.-K. (2018). A multi-temporal framework for high-level activity analysis: Violent event detection in visual surveillance. Information Sciences, 447, 83–103. https://doi.org/10.1016/j.ins.2018.02.065
  13. Carneiro, S. A., da Silva, G. P., Guimaraes, S. J. F., Pedrini, H. (2019). Fight Detection in Video Sequences Based on Multi-Stream Convolutional Neural Networks. 2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI). https://doi.org/10.1109/sibgrapi.2019.00010
  14. Febin, I. P., Jayasree, K., Joy, P. T. (2019). Violence detection in videos for an intelligent surveillance system using MoBSIFT and movement filtering algorithm. Pattern Analysis and Applications, 23 (2), 611–623. https://doi.org/10.1007/s10044-019-00821-3
  15. Marinoiu, E., Zanfir, M., Olaru, V., Sminchisescu, C. (2018). 3D Human Sensing, Action and Emotion Recognition in Robot Assisted Therapy of Children with Autism. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. https://doi.org/10.1109/cvpr.2018.00230
  16. Koppula, H. S., Gupta, R., Saxena, A. (2013). Learning human activities and object affordances from RGB-D videos. The International Journal of Robotics Research, 32 (8), 951–970. https://doi.org/10.1177/0278364913478446
  17. Bermejo Nievas, E., Deniz Suarez, O., Bueno García, G., Sukthankar, R. (2011). Violence Detection in Video Using Computer Vision Techniques. Lecture Notes in Computer Science, 332–339. https://doi.org/10.1007/978-3-642-23678-5_39
  18. Zhou, P., Ding, Q., Luo, H., Hou, X. (2017). Violent Interaction Detection in Video Based on Deep Learning. Journal of Physics: Conference Series, 844, 012044. https://doi.org/10.1088/1742-6596/844/1/012044
  19. Pawar, K., Attar, V. (2018). Deep learning approaches for video-based anomalous activity detection. World Wide Web, 22 (2), 571–601. https://doi.org/10.1007/s11280-018-0582-1
  20. Zhao, H., Torralba, A., Torresani, L., Yan, Z. (2019). HACS: Human Action Clips and Segments Dataset for Recognition and Temporal Localization. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). https://doi.org/10.1109/iccv.2019.00876
  21. Olweus, D. (1978). Aggression in the schools: Bullies and whipping boys. Hemisphere.
  22. Solberg, M. E., Olweus, D. (2003). Prevalence estimation of school bullying with the Olweus Bully/Victim Questionnaire. Aggressive Behavior, 29 (3), 239–268. https://doi.org/10.1002/ab.10047
  23. Shetgiri, R. (2013). Bullying and Victimization Among Children. Advances in Pediatrics, 60 (1), 33–51. https://doi.org/10.1016/j.yapd.2013.04.004
  24. Fung, A. L. C. (2019). Adolescent Reactive and Proactive Aggression, and Bullying in Hong Kong: Prevalence, Psychosocial Correlates, and Prevention. Journal of Adolescent Health, 64 (6), S65–S72. https://doi.org/10.1016/j.jadohealth.2018.09.018
  25. Lereya, S. T., Copeland, W. E., Costello, E. J., Wolke, D. (2015). Adult mental health consequences of peer bullying and maltreatment in childhood: two cohorts in two countries. The Lancet Psychiatry, 2 (6), 524–531. https://doi.org/10.1016/s2215-0366(15)00165-0
  26. Buch-Frohlich, A., Paradis, A., Hébert, M., Cyr, M., Frappier, J.-Y. (2019). Bullying and sexual harassment as predictors of suicidality in sexually abused adolescent girls. International Journal of Victimology, 35, 63–73.
  27. Yang, T., Guo, L., Hong, F., Wang, Z., Yu, Y., Lu, C. (2020). Association Between Bullying and Suicidal Behavior Among Chinese Adolescents: An Analysis of Gender Differences. Psychology Research and Behavior Management, Volume 13, 89–96. https://doi.org/10.2147/prbm.s228007
  28. Lloyd, K., Rosin, P. L., Marshall, D., Moore, S. C. (2017). Detecting violent and abnormal crowd activity using temporal analysis of grey level co-occurrence matrix (GLCM)-based texture measures. Machine Vision and Applications, 28 (3-4), 361–371. https://doi.org/10.1007/s00138-017-0830-x
  29. Bilinski, P., Bremond, F. (2016). Human violence recognition and detection in surveillance videos. 2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). https://doi.org/10.1109/avss.2016.7738019
Визначення психо-емоційного стану спостереженого на основі аналізу відеоспостереження

##submission.downloads##

Опубліковано

2024-02-28

Як цитувати

Amirgaliyev, Y., Krak, I., Bukenova, I., Kazangapova, B., & Bukenov, G. (2024). Визначення психо-емоційного стану спостереженого на основі аналізу відеоспостереження. Eastern-European Journal of Enterprise Technologies, 1(2 (127), 45–53. https://doi.org/10.15587/1729-4061.2024.296500