Підвищення якості та технологічних властивостей м’яса гусей при низькотемпературному зберіганні за дії біологічно активних речовин вівса та люцерни

Автор(и)

  • Данііл Олександрович Майборода Таврійський державний агротехнологічний університет імені Дмитра Моторного, Україна https://orcid.org/0000-0003-4649-992X
  • Олена Олександрівна Данченко Таврійський державний агротехнологічний університет імені Дмитра Моторного, Україна https://orcid.org/0000-0001-5049-3446
  • Вікторія Анатоліївна Грищенко Національний університет біоресурсів і природокористування України, Україна https://orcid.org/0000-0001-6601-1392
  • Микола Миколайович Данченко Таврійський державний агротехнологічний університет імені Дмитра Моторного, Україна https://orcid.org/0000-0001-7555-6511

DOI:

https://doi.org/10.15587/1729-4061.2024.296900

Ключові слова:

м’ясо гусей, біологічно активні сполуки, овес, люцерна, низькотемпературне зберігання, антиоксиданти

Анотація

М'ясо птиці відіграє ключову роль як джерело високоякісного білка, вітамінів, мінералів та ненасичених жирних кислот. Однак ненасичені жирні кислоти, зокрема незамінні, схильні до окислювальних реакцій під час зберігання м'яса, що може негативно впливати на його якість. Об’єктом дослідження є технологія отримання і зберігання м'яса птиці. Як дослідний матеріал використовували гусей породи Легарт Датський (Legart Danish). Овес (Avena Sativa) та люцерна (Medicago sativa) містять велику кількість біологічно активних речовин (мінерали, ненасичені жирні кислоти, амінокислоти, антиоксиданти. Додавання вегетативних частин вівса та люцерни у раціон гусей сприяє покращенню якості отриманого м’яса, зокрема після тривалого низькотемпературного зберігання. Забій гусей здійснювали на 63-тю добу. М’ясо зберігали при температурі –18 °C впродовж 90 діб.

Встановлено підвищення живої маси гусей на 11,5 % у ранньому забійному віці, підвищения вміст білка (на 5 %), кращу вологозв'язувальну здатність (на 6–7,3 %), зниження вмісту продуктів пероксидного окиснення ліпідів, особливо на 67-у добу зберігання (28,3 %). Зафіксовано значне збільшення вмісту ω3- та ω6-поліненасичених жирних кислот (відповідно на 24,2 % та 10,8 %). Спостерігається збільшення вмісту вітаміну Е та β-каротину, як перед заморожуванням (38,5 % та 19,6 %), так і на кінець періоду зберігання (50,9 % та 20 %). Виявлено тенденцію до збільшення вмісту незамінних амінокислот (треоніну та метионіну). Результати можуть бути використані у виробництві м'яса гусей для покращення його харчових характеристик, що має важливе значення для здоров’я споживачів, виробників м'ясної продукції, а також у наукових дослідженнях з розвитку технологій у галузі виробництва та зберігання м’яса

Біографії авторів

Данііл Олександрович Майборода, Таврійський державний агротехнологічний університет імені Дмитра Моторного

Аспірант

Кафедра харчових технологій та готельно-ресторанної справи

Олена Олександрівна Данченко, Таврійський державний агротехнологічний університет імені Дмитра Моторного

Доктор сільськогосподарських наук

Кафедра харчових технологій та готельно-ресторанної справи

Вікторія Анатоліївна Грищенко, Національний університет біоресурсів і природокористування України

Доктор ветеринарних наук

Кафедра біохімії і фізіології тварин імені академіка М.Ф. Гулого

Микола Миколайович Данченко, Таврійський державний агротехнологічний університет імені Дмитра Моторного

Кандидат технічних наук

Кафедра вищої математики і фізики

Посилання

  1. Ahmad, R. S., Imran, A., Hussain, M. B. (2018). Nutritional Composition of Meat. Meat Science and Nutrition. https://doi.org/10.5772/intechopen.77045
  2. OECD-FAO Agricultural Outlook 2020-2029 (2020). In OECD-FAO Agricultural Outlook. OECD. https://doi.org/10.1787/1112c23b-en
  3. Hafez, H. M., Attia, Y. A., Bovera, F., Abd El-Hack, M. E., Khafaga, A. F., de Oliveira, M. C. (2021). Influence of COVID-19 on the poultry production and environment. Environmental Science and Pollution Research, 28 (33), 44833–44844. https://doi.org/10.1007/s11356-021-15052-5
  4. Hafez, H. M., Attia, Y. A. (2020). Challenges to the Poultry Industry: Current Perspectives and Strategic Future After the COVID-19 Outbreak. Frontiers in Veterinary Science, 7. https://doi.org/10.3389/fvets.2020.00516
  5. Bezpeka i bezpechnist kharchuvannia pid chas i pislia viyny (2022). Kyiv. Available at: http://www.auu.org.ua/media/publications/1876/files/ReportF_2022_12_14_09_45_37_750479.pdf
  6. Trusova, N. V. et al. (2017). Restrictions of financing the budget deficit of Ukraine. International journal of economic research, 14 (14), 353–364. Available at: http://elar.tsatu.edu.ua/handle/123456789/3351
  7. Trusova, N. V. et al. (2018). Debt burden of the financial system of Ukraine and countries of the Eurozone: policy of regulating of the risks. Espacios, 39 (39), 30. Available at: https://www.revistaespacios.com/a18v39n39/18393930.html
  8. Marangoni, F., Corsello, G., Cricelli, C., Ferrara, N., Ghiselli, A., Lucchin, L., Poli, A. (2015). Role of poultry meat in a balanced diet aimed at maintaining health and wellbeing: an Italian consensus document. Food & Nutrition Research, 59 (1), 27606. https://doi.org/10.3402/fnr.v59.27606
  9. Yu, J., Yang, H. M., Lai, Y. Y., Wan, X. L., Wang, Z. Y. (2020). The body fat distribution and fatty acid composition of muscles and adipose tissues in geese. Poultry Science, 99 (9), 4634–4641. https://doi.org/10.1016/j.psj.2020.05.052
  10. Domínguez, R., Pateiro, M., Gagaoua, M., Barba, F. J., Zhang, W., Lorenzo, J. M. (2019). A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants, 8 (10), 429. https://doi.org/10.3390/antiox8100429
  11. Orkusz, A., Wolańska, W., Krajinska, U. (2021). The Assessment of Changes in the Fatty Acid Profile and Dietary Indicators Depending on the Storage Conditions of Goose Meat. Molecules, 26 (17), 5122. https://doi.org/10.3390/molecules26175122
  12. Muzolf-Panek, M., Kaczmarek, A., Tomaszewska-Gras, J., Cegielska-Radziejewska, R., Szablewski, T., Majcher, M., Stuper-Szablewska, K. (2020). A Chemometric Approach to Oxidative Stability and Physicochemical Quality of Raw Ground Chicken Meat Affected by Black Seed and Other Spice Extracts. Antioxidants, 9 (9), 903. https://doi.org/10.3390/antiox9090903
  13. Priss, O., Korchynskyy, I., Kryvko, Y., Korchynska, O. (2023). Leveraging Horseradish’s Bioactive Substances for Sustainable Agricultural Development. International Journal of Sustainable Development and Planning, 18 (8), 2563–2570. https://doi.org/10.18280/ijsdp.180828
  14. Nemati, Z., Alirezalu, K., Besharati, M., Amirdahri, S., Franco, D., Lorenzo, J. M. (2020). Improving the Quality Characteristics and Shelf Life of Meat and Growth Performance in Goose Fed Diets Supplemented with Vitamin E. Foods, 9 (6), 798. https://doi.org/10.3390/foods9060798
  15. Kim, I.-S., Hwang, C.-W., Yang, W.-S., Kim, C.-H. (2021). Multiple Antioxidative and Bioactive Molecules of Oats (Avena sativa L.) in Human Health. Antioxidants, 10 (9), 1454. https://doi.org/10.3390/antiox10091454
  16. Pretorius, C. J., Dubery, I. A. (2023). Avenanthramides, Distinctive Hydroxycinnamoyl Conjugates of Oat, Avena sativa L.: An Update on the Biosynthesis, Chemistry, and Bioactivities. Plants, 12 (6), 1388. https://doi.org/10.3390/plants12061388
  17. Ma, J., Huangfu, W., Yang, X., Xu, J., Zhang, Y., Wang, Z. et al. (2022). “King of the forage”—Alfalfa supplementation improves growth, reproductive performance, health condition and meat quality of pigs. Frontiers in Veterinary Science, 9. https://doi.org/10.3389/fvets.2022.1025942
  18. Blume, L., Hoischen-Taubner, S., Sundrum, A. (2021). Alfalfa – a regional protein source for all farm animals. Landbauforschung – Journal of Sustainable and Organic Agriculture, 71 (1), 1–13. https://doi.org/10.3220/LBF1615894157000
  19. Antipova, L. V., Glotova, I. A., Rogov, I. A. (2001). Metody issledovaniya myasa i myasnyh produktov. Moscow: Kolos, 576.
  20. Tsviakh, O. O. (2022). Metody laboratornoi diahnostyky: metodychni rekomendatsiyi. Mykolaiv: vydavets Rumiantseva H. V., 40.
  21. Ionov, I. A., Shapovalov, S. O., Rudenko, E. V., Dolgaya, M. N., Ahtyrskiy, A. V., Zozulya, Yu. A. et al. (2011). Kriterii i metody kontrolya metabolizma v organizme zhivotnyh i ptits. Kharkiv: Institut zhivotnovodstva NAAN, 378.
  22. Bligh, E. G., Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37 (1), 911–917. https://doi.org/10.1139/y59-099
  23. Palmer, F. B. St. C. (1971). The extraction of acidic phospholipids in organic solvent mixtures containing water. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 231 (1), 134–144. https://doi.org/10.1016/0005-2760(71)90261-x
  24. Suray, P. F., Ionov, I. A. (1990). Biohimicheskie metody kontrolya metabolizma v organah i tkanyah ptits i ih vitaminnoy obespechennosti. Kharkiv, 138.
  25. Bal'-Prilipko, L. V., Zadorozhnyy, V. I., Onishchenko, L. V. (2006). Vliyanie razlichnyh faktorov na srok i kachestvo hraneniya myasnyh produktov. Myasnoe delo, 6, 53–55.
  26. Landau, S., Everitt, B. S. (2003). A Handbook of Statistical Analyses Using SPSS. Chapman and Hall/CRC. https://doi.org/10.1201/9780203009765
  27. Mahfuz, S., Shang, Q., Piao, X. (2021). Phenolic compounds as natural feed additives in poultry and swine diets: a review. Journal of Animal Science and Biotechnology, 12 (1). https://doi.org/10.1186/s40104-021-00565-3
  28. Lee, S., Jo, K., Jeong, H. G., Choi, Y.-S., Kyoung, H., Jung, S. (2022). Freezing-induced denaturation of myofibrillar proteins in frozen meat. Critical Reviews in Food Science and Nutrition, 1–18. https://doi.org/10.1080/10408398.2022.2116557
  29. Li, H., Liu, Y., Wei, L., Lin, Q., Zhang, Z. (2022). Effects of Feeding Fermented Medicago sativa (Plus Soybean and DDGS) on Growth Performance, Blood Profiles, Gut Health, and Carcass Characteristics of Lande (Meat) Geese. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.902802
  30. Maiboroda, D. O., Danchenko, O. O., Zdorovtseva, L. M., Fedorko, A. S., Danchenko, M. M., Zahorko, N. P. (2020). Oat extract as a technological means for improving the quality of geese meat. Proceedings of the Tavria State Agrotechnological University, 20 (1), 203–212. https://doi.org/10.31388/2078-0877-20-1-203-212
  31. Scollan, N. D., Price, E. M., Morgan, S. A., Huws, S. A., Shingfield, K. J. (2017). Can we improve the nutritional quality of meat? Proceedings of the Nutrition Society, 76 (4), 603–618. https://doi.org/10.1017/s0029665117001112
  32. Sun, Y., Hou, T., Yu, Q., Zhang, C., Zhang, Y., Xu, L. (2023). Mixed oats and alfalfa improved the antioxidant activity of mutton and the performance of goats by affecting intestinal microbiota. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1056315
  33. Li, J., Zhang, S., Gu, X., Xie, J., Zhu, X., Wang, Y., Shan, T. (2022). Effects of alfalfa levels on carcass traits, meat quality, fatty acid composition, amino acid profile, and gut microflora composition of Heigai pigs. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.975455
  34. Opanasenko, N. N., Kalitka, V. V., Danchenko, Е. A. (2010). State of the enzymatic part of system of antioxidatic protection of poultry meat at low-temperature storage. Tekhnolohiya vyrobnytstva i pererobky produktsiyi tvarynnytstva, 2 (70), 85–89. Available at: https://btsau.edu.ua/sites/default/files/visnyky/tehnologi%2070.pdf#page=85
  35. Djuricic, I., Calder, P. C. (2021). Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021. Nutrients, 13 (7), 2421. https://doi.org/10.3390/nu13072421
  36. Xue, Y., Teng, Y., Chen, M., Li, Z., Wang, G. (2021). Antioxidant Activity and Mechanism of Avenanthramides: Double H+/e– Processes and Role of the Catechol, Guaiacyl, and Carboxyl Groups. Journal of Agricultural and Food Chemistry, 69 (25), 7178–7189. https://doi.org/10.1021/acs.jafc.1c01591
  37. Provesi, J. G., Dias, C. O., Amante, E. R. (2011). Changes in carotenoids during processing and storage of pumpkin puree. Food Chemistry, 128 (1), 195–202. https://doi.org/10.1016/j.foodchem.2011.03.027
  38. Kwiecień, M., Winiarska-Mieczan, A., Danek-Majewska, A., Kwiatkowska, K., Krusiński, R. (2021). Effects of dietary alfalfa protein concentrate on lipid metabolism and antioxidative status of serum and composition and fatty acid profile and antioxidative status and dietetic value of muscles in broilers. Poultry Science, 100 (4), 100974. https://doi.org/10.1016/j.psj.2020.12.071
  39. Feedstuffs ingredient analysis table. Available at: https://feedstuffs.farmcentric.com/mdfm/Feeess50/author/427/2015/11/Feedstuffs_RIBG_Ingredient_Analysis_Table_2016.pdf
Підвищення якості та технологічних властивостей м’яса гусей при низькотемпературному зберіганні за дії біологічно активних речовин вівса та люцерни

##submission.downloads##

Опубліковано

2024-02-28

Як цитувати

Майборода, Д. О., Данченко, О. О., Грищенко, В. А., & Данченко, М. М. (2024). Підвищення якості та технологічних властивостей м’яса гусей при низькотемпературному зберіганні за дії біологічно активних речовин вівса та люцерни. Eastern-European Journal of Enterprise Technologies, 1(11 (127), 20–28. https://doi.org/10.15587/1729-4061.2024.296900

Номер

Розділ

Технології та обладнання харчових виробництв