Розробка методу управління технічними системами з використанням біоінспірованого алгоритму

Автор(и)

  • Олег Ярославович Сова Національний університет оборони України, Україна https://orcid.org/0000-0002-7200-8955
  • Ілля Андрійович Дмитрієв Харківський національний автомобільно-дорожній університет, Україна https://orcid.org/0000-0001-8693-3706
  • Ніна Георгіївна Кучук Національний технічний університет «Харківський політехнічний інститут», Україна https://orcid.org/0000-0002-0784-1465
  • Олександр Володимирович Єфименко Харківський національний автомобільно-дорожній університет, Україна https://orcid.org/0000-0003-0628-7893
  • Наталія Ігорівна Литвиненко Військовий інститут Київського національного університету імені Тараса Шевченка, Україна https://orcid.org/0000-0002-2203-2746
  • Ганна Анатоліївна Плєхова Харківський національний автомобільно-дорожній університет, Україна https://orcid.org/0000-0002-6912-6520
  • Андрій Миколайович Шатров Державний науково-дослідний інституту авіації, Україна https://orcid.org/0000-0002-3070-7483
  • Євгеній Ігорович Чемерис Державний науково-дослідний інституту авіації, Україна https://orcid.org/0000-0003-4918-3445
  • Олексій Володимирович Довбенко Науково-дослідний інститут воєнної розвідки, Україна https://orcid.org/0009-0003-5024-0563
  • Максим Іванович Стойчев Військовий інститут телекомунікацій та інформатизації імені Героїв Крут, Україна https://orcid.org/0009-0002-7423-2384

DOI:

https://doi.org/10.15587/1729-4061.2024.304471

Ключові слова:

глибоке навчання, складні процеси, генетичний алгоритм, складні та динамічні об’єкти

Анотація

Управлінські рішення сьогодення належать саме від успішного вирішення оптимізаційних завдань, які є розривними, недиференційованими, а також мультимодальними. Одним з підходів до підвищення ефективності вирішення оптимізаційних завдань є біоінспіровані алгоритми. Об’єктом дослідження є складні динамічні об’єкти. Предметом дослідження є процес прийняття рішення в завданнях управління складними динамічними об’єктами. Запропоновано метод управління з використанням біоінспірованого алгоритму. В основу дослідження покладений алгоритм зграї гусаків – для пошуку рішення щодо стану динамічних об’єктів з ієрархічною структурою. Для навчання агентів гусаків (АГ) – використовуються штучні нейронні мережі, що еволюціонують, а для відбору найкращих в комбінованому ройовому алгоритмі використовується удосконалений генетичний алгоритм.

Оригінальність запропонованої методу полягає у розставленні АГ урахуванням невизначеності вихідних даних, удосконаленими процедурами глобального та локального пошуку. Також оригінальність дослідження полягає у визначенні місць харчування АГ, що дозволяє обрати пріоритетність пошуку в заданому напрямку. Наступним елементом оригінальності дослідження є можливість визначення показників АГ-охоронців, що дозволяє корегувати кількість часу, на якому буде знаходитися зграя АГ. Наступим елементом оригінальності дослідження є визначення початкової швидкості кожного АГ. Це дозволяє оптимізувати швидкість проведення досліджень кожним АГ у визначеному напрямку досліджень. Використання методу дозволяє досягти підвищення оперативності обробки даних на рівні 10–12 % за рахунок використання додаткових удосконалених процедур. Запропонований метод доцільно використовувати для вирішення задач оцінки складних динамічних об’єктів

Біографії авторів

Олег Ярославович Сова, Національний університет оборони України

Доктор технічних наук, професор, заступник начальника наукового центру

Науковий центр проблем виховання доброчесності та запобігання корупції у секторі безпеки та оборони

Ілля Андрійович Дмитрієв, Харківський національний автомобільно-дорожній університет

Доктор економічних наук, професор

Кафедра менеджменту

Ніна Георгіївна Кучук, Національний технічний університет «Харківський політехнічний інститут»

Доктор технічних наук, професор

Кафедра комп’ютерної інженерії та програмування

Олександр Володимирович Єфименко, Харківський національний автомобільно-дорожній університет

Кандидат технічних наук, доцент

Кафедра будівельних і дорожніх машин

Наталія Ігорівна Литвиненко, Військовий інститут Київського національного університету імені Тараса Шевченка

Кандидат технічних наук, старший науковий співробітник, начальник кафедри

Кафедра геоінформаційних систем і технологій

Ганна Анатоліївна Плєхова, Харківський національний автомобільно-дорожній університет

Кандидат технічних наук, доцент

Кафедра інформатики та прикладної математики

Андрій Миколайович Шатров, Державний науково-дослідний інституту авіації

Кандидат технічних наук, старший науковий співробітник, провідний науковий співробітник

Науково-дослідний відділ

Євгеній Ігорович Чемерис, Державний науково-дослідний інституту авіації

Доктор філософії, науковий співробітник

Науково-дослідний відділ

Олексій Володимирович Довбенко, Науково-дослідний інститут воєнної розвідки

Науковий співробітник

Науково-дослідний відділ

Максим Іванович Стойчев, Військовий інститут телекомунікацій та інформатизації імені Героїв Крут

Старший викладач

Кафедра бойового застосування підрозділів зв’язку

Посилання

  1. Bashkyrov, O. M., Kostyna, O. M., Shyshatskyi, A. V. (2015). Rozvytok intehrovanykh system zviazku ta peredachi danykh dlia potreb Zbroinykh Syl. Ozbroiennia ta viyskova tekhnika, 1, 35–39. Available at: http://nbuv.gov.ua/UJRN/ovt_2015_1_7
  2. Dudnyk, V., Sinenko, Y., Matsyk, M., Demchenko, Y., Zhyvotovskyi, R., Repilo, I. et al. (2020). Development of a method for training artificial neural networks for intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (2 (105)), 37–47. https://doi.org/10.15587/1729-4061.2020.203301
  3. Sova, O., Shyshatskyi, A., Salnikova, O., Zhuk, O., Trotsko, O., Hrokholskyi, Y. (2021). Development of a method for assessment and forecasting of the radio electronic environment. EUREKA: Physics and Engineering, 4, 30–40. https://doi.org/10.21303/2461-4262.2021.001940
  4. Pievtsov, H., Turinskyi, O., Zhyvotovskyi, R., Sova, O., Zvieriev, O., Lanetskii, B., Shyshatskyi, A. (2020). Development of an advanced method of finding solutions for neuro-fuzzy expert systems of analysis of the radioelectronic situation. EUREKA: Physics and Engineering, 4, 78–89. https://doi.org/10.21303/2461-4262.2020.001353
  5. Zuiev, P., Zhyvotovskyi, R., Zvieriev, O., Hatsenko, S., Kuprii, V., Nakonechnyi, O. et al. (2020). Development of complex methodology of processing heterogeneous data in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 4 (9 (106)), 14–23. https://doi.org/10.15587/1729-4061.2020.208554
  6. Shyshatskyi, A. (2020). Complex Methods of Processing Different Data in Intellectual Systems for Decision Support System. International Journal of Advanced Trends in Computer Science and Engineering, 9 (4), 5583–5590. https://doi.org/10.30534/ijatcse/2020/206942020
  7. Yeromina, N., Kurban, V., Mykus, S., Peredrii, O., Voloshchenko, O., Kosenko, V. et al. (2021). The Creation of the Database for Mobile Robots Navigation under the Conditions of Flexible Change of Flight Assignment. International Journal of Emerging Technology and Advanced Engineering, 11 (5), 37–44. https://doi.org/10.46338/ijetae0521_05
  8. Rotshteyn, A. P. (1999). Intellektual'nye tekhnologii identifikatsii: nechetkie mnozhestva, geneticheskie algoritmy, neyronnye seti. Vinnitsa: “UNIVERSUM”, 320.
  9. Ko, Y.-C., Fujita, H. (2019). An evidential analytics for buried information in big data samples: Case study of semiconductor manufacturing. Information Sciences, 486, 190–203. https://doi.org/10.1016/j.ins.2019.01.079
  10. Ramaji, I. J., Memari, A. M. (2018). Interpretation of structural analytical models from the coordination view in building information models. Automation in Construction, 90, 117–133. https://doi.org/10.1016/j.autcon.2018.02.025
  11. Pérez-González, C. J., Colebrook, M., Roda-García, J. L., Rosa-Remedios, C. B. (2019). Developing a data analytics platform to support decision making in emergency and security management. Expert Systems with Applications, 120, 167–184. https://doi.org/10.1016/j.eswa.2018.11.023
  12. Chen, H. (2018). Evaluation of Personalized Service Level for Library Information Management Based on Fuzzy Analytic Hierarchy Process. Procedia Computer Science, 131, 952–958. https://doi.org/10.1016/j.procs.2018.04.233
  13. Chan, H. K., Sun, X., Chung, S.-H. (2019). When should fuzzy analytic hierarchy process be used instead of analytic hierarchy process? Decision Support Systems, 125, 113114. https://doi.org/10.1016/j.dss.2019.113114
  14. Osman, A. M. S. (2019). A novel big data analytics framework for smart cities. Future Generation Computer Systems, 91, 620–633. https://doi.org/10.1016/j.future.2018.06.046
  15. Gödri, I., Kardos, C., Pfeiffer, A., Váncza, J. (2019). Data analytics-based decision support workflow for high-mix low-volume production systems. CIRP Annals, 68 (1), 471–474. https://doi.org/10.1016/j.cirp.2019.04.001
  16. Harding, J. L. (2013). Data quality in the integration and analysis of data from multiple sources: some research challenges. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-2/W1, 59–63. https://doi.org/10.5194/isprsarchives-xl-2-w1-59-2013
  17. Kosko, B. (1986). Fuzzy cognitive maps. International Journal of Man-Machine Studies, 24 (1), 65–75. https://doi.org/10.1016/s0020-7373(86)80040-2
  18. Koval, M., Sova, O., Shyshatskyi, A., Artabaiev, Y., Garashchuk, N., Yivzhenko, Y. et al. (2022). Improving the method for increasing the efficiency of decision-making based on bio-inspired algorithms. Eastern-European Journal of Enterprise Technologies, 6 (4 (120)), 6–13. https://doi.org/10.15587/1729-4061.2022.268621
  19. Maccarone, A. D., Brzorad, J. N., Stone, H. M. (2008). Characteristics and Energetics of Great Egret and Snowy Egret Foraging Flights. Waterbirds, 31 (4), 541–549. https://doi.org/10.1675/1524-4695-31.4.541
  20. Koshlan, A., Salnikova, O., Chekhovska, M., Zhyvotovskyi, R., Prokopenko, Y., Hurskyi, T. et al. (2019). Development of an algorithm for complex processing of geospatial data in the special-purpose geoinformation system in conditions of diversity and uncertainty of data. Eastern-European Journal of Enterprise Technologies, 5 (9 (101)), 35–45. https://doi.org/10.15587/1729-4061.2019.180197
  21. Mahdi, Q. A., Shyshatskyi, A., Prokopenko, Y., Ivakhnenko, T., Kupriyenko, D., Golian, V. et al. (2021). Development of estimation and forecasting method in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (9 (111)), 51–62. https://doi.org/10.15587/1729-4061.2021.232718
  22. Gorokhovatsky, V., Stiahlyk, N., Tsarevska, V. (2021). Combination method of accelerated metric data search in image classification problems. Advanced Information Systems, 5 (3), 5–12. https://doi.org/10.20998/2522-9052.2021.3.01
  23. Braik, M., Ryalat, M. H., Al-Zoubi, H. (2021). A novel meta-heuristic algorithm for solving numerical optimization problems: Ali Baba and the forty thieves. Neural Computing and Applications, 34 (1), 409–455. https://doi.org/10.1007/s00521-021-06392-x
  24. Meleshko, Y., Drieiev, O., Drieieva, H. (2020). Method of identification bot profiles based on neural networks in recommendation systems. Advanced Information Systems, 4 (2), 24–28. https://doi.org/10.20998/2522-9052.2020.2.05
  25. Kuchuk, N., Merlak, V., Skorodelov, V. (2020). A method of reducing access time to poorly structured data. Advanced Information Systems, 4 (1), 97–102. https://doi.org/10.20998/2522-9052.2020.1.14
  26. Shyshatskyi, A., Tiurnikov, M., Suhak, S., Bondar, O., Melnyk, A., Bokhno, T., Lyashenko, A. (2020). Method of assessment of the efficiency of the communication of operational troop grouping system. Advanced Information Systems, 4 (1), 107–112. https://doi.org/10.20998/2522-9052.2020.1.16
  27. Raskin, L., Sira, O. (2016). Method of solving fuzzy problems of mathematical programming. Eastern-European Journal of Enterprise Technologies, 5 (4 (83)), 23–28. https://doi.org/10.15587/1729-4061.2016.81292
  28. Lytvyn, V., Vysotska, V., Pukach, P., Brodyak, O., Ugryn, D. (2017). Development of a method for determining the keywords in the slavic language texts based on the technology of web mining. Eastern-European Journal of Enterprise Technologies, 2 (2 (86)), 14–23. https://doi.org/10.15587/1729-4061.2017.98750
  29. Stepanenko, A., Oliinyk, A., Deineha, L., Zaiko, T. (2018). Development of the method for decomposition of superpositions of unknown pulsed signals using the second­order adaptive spectral analysis. Eastern-European Journal of Enterprise Technologies, 2 (9 (92)), 48–54. https://doi.org/10.15587/1729-4061.2018.126578
  30. Gorbenko, I., Ponomar, V. (2017). Examining a possibility to use and the benefits of post-quantum algorithms dependent on the conditions of their application. Eastern-European Journal of Enterprise Technologies, 2 (9 (86)), 21–32. https://doi.org/10.15587/1729-4061.2017.96321
  31. Koval, M., Sova, O., Orlov, O., Shyshatskyi, A., Artabaiev, Y., Shknai, O. et al. (2022). Improvement of complex resource management of special-purpose communication systems. Eastern-European Journal of Enterprise Technologies, 5 (9 (119)), 34–44. https://doi.org/10.15587/1729-4061.2022.266009
Розробка методу управління технічними системами з використанням біоінспірованого алгоритму

##submission.downloads##

Опубліковано

2024-06-28

Як цитувати

Сова, О. Я., Дмитрієв, І. А., Кучук, Н. Г., Єфименко, О. В., Литвиненко, Н. І., Плєхова, Г. А., Шатров, А. М., Чемерис, Є. І., Довбенко, О. В., & Стойчев, М. І. (2024). Розробка методу управління технічними системами з використанням біоінспірованого алгоритму. Eastern-European Journal of Enterprise Technologies, 3(4 (129), 35–43. https://doi.org/10.15587/1729-4061.2024.304471

Номер

Розділ

Математика та кібернетика - прикладні аспекти