Development of a method for managing technical systems using a bio-inspired algorithm

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.304471

Keywords:

deep learning, complex processes, genetic algorithm, complex and dynamic objects

Abstract

Today’s management solutions depend precisely on the successful solution of optimization problems, which are discontinuous, undifferentiated and multimodal. One of the approaches to increase the efficiency of solving optimization problems is bio-inspired algorithms. The object of the study is complex dynamic objects. The subject of the study is the decision-making process in the problems of managing complex dynamic objects. A management method using a bio-inspired algorithm is proposed. The research is based on the goose algorithm – for finding a solution to the state of dynamic objects with a hierarchical structure. Evolving artificial neural networks are used to train goose agents (GA) and an advanced genetic algorithm is used to select the best ones in the combined swarm algorithm.

The originality of the proposed method lies in setting GA taking into account the uncertainty of the initial data, improved global and local search procedures. Also, the originality of the study lies in determining GA food locations, which allows choosing the priority of search in a given direction. The next element in the originality of the study is the ability to determine the indicators of guard GA, which allows adjusting the amount of time during which the GA flock will be located. Another original element of the study is the determination of the initial velocity of each GA. This makes it possible to optimize the speed of conducting exploration by each GA in a certain research direction. The method allows increasing the efficiency of data processing at the level of 10–12 % by using additional improved procedures. The proposed method should be used to solve problems of evaluating complex dynamic objects

Author Biographies

Oleg Sova, The National University of Defense of Ukraine

Doctor of Technical Science, Professor, Deputy Head of Scientific Center

Scientific Center for Building Integrity and Preventing Corruption in the Security and Defense Sector

Illia Dmytriiev, Kharkiv National Automobile and Highway University

Doctor of Economic Sciences, Professor

Department of Management

Nina Kuchuk, National Technical University “Kharkiv Polytechnic Institute”

Doctor of Technical Sciences, Professor

Department of Computer Engineering and Programming

Oleksandr Yefymenko, Kharkiv National Automobile and Highway University

PhD, Associate Professor

Department of Construction And Road-Building Machinery

Nataliia Lytvynenko, Military Institute of Taras Shevchenko National University of Kyiv

PhD, Senior Researcher, Head of Department

Department of Geoinformation Systems and Technologies

Ganna Plekhova, Kharkiv National Automobile and Highway University

PhD, Associate Professor

Department of Informatics and Applied Mathematics

Andrii Shatrov, State Scientific-Research Institute of Aviation

PhD, Senior Research Fellow, Leading Researcher

Scientific-Research Department

Yevheniy Chemerys, State Scientific-Research Institute of Aviation

PhD, Researcher

Scientific-Research Department

Oleksii Dovbenko, Scientific-Research Institute of Military Intelligence

Researcher

Scientific-Resears Department

Maksym Stoichev, Military Institute of Telecommunications and Information Technologies named after Heroes of Kruty

Senior Lecturer

Department of Combat Use of Communication Units

References

  1. Bashkyrov, O. M., Kostyna, O. M., Shyshatskyi, A. V. (2015). Rozvytok intehrovanykh system zviazku ta peredachi danykh dlia potreb Zbroinykh Syl. Ozbroiennia ta viyskova tekhnika, 1, 35–39. Available at: http://nbuv.gov.ua/UJRN/ovt_2015_1_7
  2. Dudnyk, V., Sinenko, Y., Matsyk, M., Demchenko, Y., Zhyvotovskyi, R., Repilo, I. et al. (2020). Development of a method for training artificial neural networks for intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (2 (105)), 37–47. https://doi.org/10.15587/1729-4061.2020.203301
  3. Sova, O., Shyshatskyi, A., Salnikova, O., Zhuk, O., Trotsko, O., Hrokholskyi, Y. (2021). Development of a method for assessment and forecasting of the radio electronic environment. EUREKA: Physics and Engineering, 4, 30–40. https://doi.org/10.21303/2461-4262.2021.001940
  4. Pievtsov, H., Turinskyi, O., Zhyvotovskyi, R., Sova, O., Zvieriev, O., Lanetskii, B., Shyshatskyi, A. (2020). Development of an advanced method of finding solutions for neuro-fuzzy expert systems of analysis of the radioelectronic situation. EUREKA: Physics and Engineering, 4, 78–89. https://doi.org/10.21303/2461-4262.2020.001353
  5. Zuiev, P., Zhyvotovskyi, R., Zvieriev, O., Hatsenko, S., Kuprii, V., Nakonechnyi, O. et al. (2020). Development of complex methodology of processing heterogeneous data in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 4 (9 (106)), 14–23. https://doi.org/10.15587/1729-4061.2020.208554
  6. Shyshatskyi, A. (2020). Complex Methods of Processing Different Data in Intellectual Systems for Decision Support System. International Journal of Advanced Trends in Computer Science and Engineering, 9 (4), 5583–5590. https://doi.org/10.30534/ijatcse/2020/206942020
  7. Yeromina, N., Kurban, V., Mykus, S., Peredrii, O., Voloshchenko, O., Kosenko, V. et al. (2021). The Creation of the Database for Mobile Robots Navigation under the Conditions of Flexible Change of Flight Assignment. International Journal of Emerging Technology and Advanced Engineering, 11 (5), 37–44. https://doi.org/10.46338/ijetae0521_05
  8. Rotshteyn, A. P. (1999). Intellektual'nye tekhnologii identifikatsii: nechetkie mnozhestva, geneticheskie algoritmy, neyronnye seti. Vinnitsa: “UNIVERSUM”, 320.
  9. Ko, Y.-C., Fujita, H. (2019). An evidential analytics for buried information in big data samples: Case study of semiconductor manufacturing. Information Sciences, 486, 190–203. https://doi.org/10.1016/j.ins.2019.01.079
  10. Ramaji, I. J., Memari, A. M. (2018). Interpretation of structural analytical models from the coordination view in building information models. Automation in Construction, 90, 117–133. https://doi.org/10.1016/j.autcon.2018.02.025
  11. Pérez-González, C. J., Colebrook, M., Roda-García, J. L., Rosa-Remedios, C. B. (2019). Developing a data analytics platform to support decision making in emergency and security management. Expert Systems with Applications, 120, 167–184. https://doi.org/10.1016/j.eswa.2018.11.023
  12. Chen, H. (2018). Evaluation of Personalized Service Level for Library Information Management Based on Fuzzy Analytic Hierarchy Process. Procedia Computer Science, 131, 952–958. https://doi.org/10.1016/j.procs.2018.04.233
  13. Chan, H. K., Sun, X., Chung, S.-H. (2019). When should fuzzy analytic hierarchy process be used instead of analytic hierarchy process? Decision Support Systems, 125, 113114. https://doi.org/10.1016/j.dss.2019.113114
  14. Osman, A. M. S. (2019). A novel big data analytics framework for smart cities. Future Generation Computer Systems, 91, 620–633. https://doi.org/10.1016/j.future.2018.06.046
  15. Gödri, I., Kardos, C., Pfeiffer, A., Váncza, J. (2019). Data analytics-based decision support workflow for high-mix low-volume production systems. CIRP Annals, 68 (1), 471–474. https://doi.org/10.1016/j.cirp.2019.04.001
  16. Harding, J. L. (2013). Data quality in the integration and analysis of data from multiple sources: some research challenges. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-2/W1, 59–63. https://doi.org/10.5194/isprsarchives-xl-2-w1-59-2013
  17. Kosko, B. (1986). Fuzzy cognitive maps. International Journal of Man-Machine Studies, 24 (1), 65–75. https://doi.org/10.1016/s0020-7373(86)80040-2
  18. Koval, M., Sova, O., Shyshatskyi, A., Artabaiev, Y., Garashchuk, N., Yivzhenko, Y. et al. (2022). Improving the method for increasing the efficiency of decision-making based on bio-inspired algorithms. Eastern-European Journal of Enterprise Technologies, 6 (4 (120)), 6–13. https://doi.org/10.15587/1729-4061.2022.268621
  19. Maccarone, A. D., Brzorad, J. N., Stone, H. M. (2008). Characteristics and Energetics of Great Egret and Snowy Egret Foraging Flights. Waterbirds, 31 (4), 541–549. https://doi.org/10.1675/1524-4695-31.4.541
  20. Koshlan, A., Salnikova, O., Chekhovska, M., Zhyvotovskyi, R., Prokopenko, Y., Hurskyi, T. et al. (2019). Development of an algorithm for complex processing of geospatial data in the special-purpose geoinformation system in conditions of diversity and uncertainty of data. Eastern-European Journal of Enterprise Technologies, 5 (9 (101)), 35–45. https://doi.org/10.15587/1729-4061.2019.180197
  21. Mahdi, Q. A., Shyshatskyi, A., Prokopenko, Y., Ivakhnenko, T., Kupriyenko, D., Golian, V. et al. (2021). Development of estimation and forecasting method in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (9 (111)), 51–62. https://doi.org/10.15587/1729-4061.2021.232718
  22. Gorokhovatsky, V., Stiahlyk, N., Tsarevska, V. (2021). Combination method of accelerated metric data search in image classification problems. Advanced Information Systems, 5 (3), 5–12. https://doi.org/10.20998/2522-9052.2021.3.01
  23. Braik, M., Ryalat, M. H., Al-Zoubi, H. (2021). A novel meta-heuristic algorithm for solving numerical optimization problems: Ali Baba and the forty thieves. Neural Computing and Applications, 34 (1), 409–455. https://doi.org/10.1007/s00521-021-06392-x
  24. Meleshko, Y., Drieiev, O., Drieieva, H. (2020). Method of identification bot profiles based on neural networks in recommendation systems. Advanced Information Systems, 4 (2), 24–28. https://doi.org/10.20998/2522-9052.2020.2.05
  25. Kuchuk, N., Merlak, V., Skorodelov, V. (2020). A method of reducing access time to poorly structured data. Advanced Information Systems, 4 (1), 97–102. https://doi.org/10.20998/2522-9052.2020.1.14
  26. Shyshatskyi, A., Tiurnikov, M., Suhak, S., Bondar, O., Melnyk, A., Bokhno, T., Lyashenko, A. (2020). Method of assessment of the efficiency of the communication of operational troop grouping system. Advanced Information Systems, 4 (1), 107–112. https://doi.org/10.20998/2522-9052.2020.1.16
  27. Raskin, L., Sira, O. (2016). Method of solving fuzzy problems of mathematical programming. Eastern-European Journal of Enterprise Technologies, 5 (4 (83)), 23–28. https://doi.org/10.15587/1729-4061.2016.81292
  28. Lytvyn, V., Vysotska, V., Pukach, P., Brodyak, O., Ugryn, D. (2017). Development of a method for determining the keywords in the slavic language texts based on the technology of web mining. Eastern-European Journal of Enterprise Technologies, 2 (2 (86)), 14–23. https://doi.org/10.15587/1729-4061.2017.98750
  29. Stepanenko, A., Oliinyk, A., Deineha, L., Zaiko, T. (2018). Development of the method for decomposition of superpositions of unknown pulsed signals using the second­order adaptive spectral analysis. Eastern-European Journal of Enterprise Technologies, 2 (9 (92)), 48–54. https://doi.org/10.15587/1729-4061.2018.126578
  30. Gorbenko, I., Ponomar, V. (2017). Examining a possibility to use and the benefits of post-quantum algorithms dependent on the conditions of their application. Eastern-European Journal of Enterprise Technologies, 2 (9 (86)), 21–32. https://doi.org/10.15587/1729-4061.2017.96321
  31. Koval, M., Sova, O., Orlov, O., Shyshatskyi, A., Artabaiev, Y., Shknai, O. et al. (2022). Improvement of complex resource management of special-purpose communication systems. Eastern-European Journal of Enterprise Technologies, 5 (9 (119)), 34–44. https://doi.org/10.15587/1729-4061.2022.266009
Development of a method for managing technical systems using a bio-inspired algorithm

Downloads

Published

2024-06-28

How to Cite

Sova, O., Dmytriiev, I., Kuchuk, N., Yefymenko, O., Lytvynenko, N., Plekhova, G., Shatrov, A., Chemerys, Y., Dovbenko, O., & Stoichev, M. (2024). Development of a method for managing technical systems using a bio-inspired algorithm. Eastern-European Journal of Enterprise Technologies, 3(4 (129), 35–43. https://doi.org/10.15587/1729-4061.2024.304471

Issue

Section

Mathematics and Cybernetics - applied aspects