Покращення діелектричних та імпедансних властивостей п’єзоелектричних Bi0.5Na0.5TiO3-SrTiO3 матеріалів без Pb, модифікованих Fe2O3

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2024.307930

Ключові слова:

п’єзоелектрик, BNT-ST, легування Fe2O3, електричні властивості, температура Кюрі

Анотація

У центрі уваги цього дослідження – п’єзоелектричний матеріал Bi0.5Na0.5TiO3-SrTiO3, легований Fe2O3. Це важливо для пошуку екологічно прийнятних п'єзоелектричних матеріалів. Ці дослідження спрямовані на отримання п’єзоелектричного матеріалу, що не містить свинцю, оскільки свинець є екологічно нешкідливим матеріалом. Альтернативним рішенням є п’єзоелектричний матеріал на основі Bi0.5Na0.5TiO3-SrTiO3, який у даному випадку легований матеріалом Fe2O3. Для визначення оптимального складу утвореного матеріалу проведено дослідження легованого Fe2O3 п’єзоелектричного матеріалу Bi0.5Na0.5TiO3-SrTiO3, виготовленого методом твердофазної реакції. Варіації легування дорівнюють 0; 2,5; 5; 7,5; і 10 в мол.%. Дослідження проводили за допомогою рентгенівської дифракційної спектроскопії, скануючого електронного мікроскопа і LCR-метра. Fe2O3, допований Bi0.5Na0.5TiO3-SrTiO3, утворив нову сполуку у формі FeBi5Ti3O15-Na2Ti3O7-SrTiO3 з кубічною, орторомбічною та моноклінною кристалічною структурою, а також збільшенням розміру кристалів із додаванням легуючих добавок, виключаючи при 5% моль і 7,5% моль. FeBi5Ti3O15-Na2Ti3O7-SrTiO3 також утворює різні розміри частинок, які становлять 0,88–8,23 мкм. З отриманих даних оптимальний склад Bi0.5Na0.5TiO3-SrTiO3, легованого Fe2O3, становив 2,5 мол.% Fe2O3 через те, що він має найвищу діелектричну проникність (er) і температуру Кюрі (Tc), а також найнижчий імпеданс матеріалу (Z) з er 12,037 при Tc 400 °C і Z 135 кОм. Висока п'єзоелектричність, про яку свідчить високе значення діелектричної проникності та температури Кюрі, можлива завдяки наявності більшої кількості іонів натрію у фазі Na2Ti3O7. Іони натрію є іонами з хорошою електричною здатністю накопичувати. Збільшення діелектричної проникності в п’єзоелектрику BNT-ST, отриманому шляхом додавання Fe2O3, показує, що цей матеріал можна використовувати як замінник п’єзоелектричних матеріалів на основі свинцю, щоб він був безпечним для навколишнього середовища. П’єзоелектричний матеріал BNT-ST, легований Fe2O3, отриманий у результаті цього дослідження, може бути застосований для отримання електроенергії з оптимальним значенням при механічному тиску

Біографії авторів

Mukhtar Effendi, Jenderal Soedirman University

Doctor of Engineering, Associate Professor, Researcher

Department of Physics

Research and Development Center for New and Renewable Energy

Nugraheni Puspita Rini, Jenderal Soedirman University

Master of Science (Doctor Candidate), Research Assistant

Department of Physics

Candra Kurniawan, National Research and Innovation (BRIN)

Researcher

Research Center for Advanced Material

Wahyu Tri Cahyanto, Jenderal Soedirman University

Professor

Department of Physics

Wahyu Widanarto, Jenderal Soedirman University

Professor

Department of Physics

Посилання

  1. Gao, X., Wu, J., Yu, Y., Chu, Z., Shi, H., Dong, S. (2018). Giant Piezoelectric Coefficients in Relaxor Piezoelectric Ceramic PNN‐PZT for Vibration Energy Harvesting. Advanced Functional Materials, 28 (30). https://doi.org/10.1002/adfm.201706895
  2. Gao, B., Yao, Z., Lai, D., Guo, Q., Pan, W., Hao, H. et al. (2020). Unexpectedly high piezoelectric response in Sm-doped PZT ceramics beyond the morphotropic phase boundary region. Journal of Alloys and Compounds, 836, 155474. https://doi.org/10.1016/j.jallcom.2020.155474
  3. Jain, A., K. J., P., Sharma, A. Kr., Jain, A., P. N, R. (2015). Dielectric and piezoelectric properties of PVDF/PZT composites: A review. Polymer Engineering & Science, 55 (7), 1589–1616. https://doi.org/10.1002/pen.24088
  4. Song, R., Shan, X., Lv, F., Xie, T. (2015). A study of vortex-induced energy harvesting from water using PZT piezoelectric cantilever with cylindrical extension. Ceramics International, 41, S768–S773. https://doi.org/10.1016/j.ceramint.2015.03.262
  5. Wang, G., Hong, Y.-H., Nguyen, H. T. K., Kim, B. W., Ahn, C. W., Han, H.-S., Lee, J.-S. (2019). High electromechanical strain properties in SrTiO3‒modified Bi1/2Na1/2TiO3‒KTaO3 lead‒free piezoelectric ceramics under low electric field. Sensors and Actuators A: Physical, 293, 1–6. https://doi.org/10.1016/j.sna.2019.04.016
  6. Hong, C.-H., Kim, H.-P., Choi, B.-Y., Han, H.-S., Son, J. S., Ahn, C. W., Jo, W. (2016). Lead-free piezoceramics – Where to move on? Journal of Materiomics, 2 (1), 1–24. https://doi.org/10.1016/j.jmat.2015.12.002
  7. Wu, S., Chen, P., Zhai, J., Shen, B., Li, P., Li, F. (2018). Enhanced piezoelectricity and energy storage performances of Fe-doped BNT–BKT–ST thin films. Ceramics International, 44 (17), 21289–21294. https://doi.org/10.1016/j.ceramint.2018.08.179
  8. Zheng, H., Sun, E., Luo, H., Zhang, X., Yang, Y., Yang, B. et al. (2024). Comprehensive optimization of piezoelectric coefficient and depolarization temperature in Mn-doped Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3-BaTiO3 lead-free piezoceramics. Journal of Materials Science & Technology, 172, 255–263. https://doi.org/10.1016/j.jmst.2023.06.043
  9. Vuong, L. D., Gio, P. D. (2020). Enhancement in dielectric, ferroelectric, and piezoelectric properties of BaTiO3- modified Bi0.5(Na0.4K0.1)TiO3 lead-free ceramics. Journal of Alloys and Compounds, 817, 152790. https://doi.org/10.1016/j.jallcom.2019.152790
  10. Maria Joseph Raj, N. P., Khandelwal, G., Kim, S.-J. (2021). 0.8BNT–0.2BKT ferroelectric-based multimode energy harvester for self-powered body motion sensors. Nano Energy, 83, 105848. https://doi.org/10.1016/j.nanoen.2021.105848
  11. Nguyen, H. T. K., Duong, T. A., Erkinov, F., Kang, H., Kim, B. W., Ahn, C. W. et al. (2020). Effect of SrTiO3 modification on dielectric, phase transition and piezoelectric properties of lead-free Bi0.5Na0.5TiO3‒CaTiO3‒SrTiO3 piezoelectric ceramics. Journal of the Korean Ceramic Society, 57 (5), 570–577. https://doi.org/10.1007/s43207-020-00051-y
  12. Nguyen, H. T. K., Duong, T. A., Erkinov, F., Ahn, C. W., Kim, B. W., Han, H.-S., Lee, J.-S. (2020). Large Electric Field-Induced Strain Response Under a Low Electric Field in Lead-Free Bi1/2Na1/2TiO3-SrTiO3-BiAlO3 Ternary Piezoelectric Ceramics. Journal of Electronic Materials, 49 (11), 6677–6685. https://doi.org/10.1007/s11664-020-08436-9
  13. Pattipaka, S., James, A. R., Dobbidi, P. (2018). Enhanced dielectric and piezoelectric properties of BNT-KNNG piezoelectric ceramics. Journal of Alloys and Compounds, 765, 1195–1208. https://doi.org/10.1016/j.jallcom.2018.06.138
  14. Bai, W., Zheng, P., Wen, F., Zhang, J., Chen, D., Zhai, J., Ji, Z. (2017). Lead-free BNT-based composite materials: enhanced depolarization temperature and electromechanical behavior. Dalton Transactions, 46 (44), 15340–15353. https://doi.org/10.1039/c7dt02846f
  15. Liu, T. Y., Ma, Y., Yu, S. F., Shi, J., Xue, S. (2011). The effect of ball milling treatment on structure and porosity of maize starch granule. Innovative Food Science & Emerging Technologies, 12 (4), 586–593. https://doi.org/10.1016/j.ifset.2011.06.009
  16. Eltouby, P., Shyha, I., Li, C., Khaliq, J. (2021). Factors affecting the piezoelectric performance of ceramic-polymer composites: A comprehensive review. Ceramics International, 47 (13), 17813–17825. https://doi.org/10.1016/j.ceramint.2021.03.126
  17. Donnelly, N. J., Shrout, T. R., Randall, C. A. (2007). Addition of a Sr, K, Nb (SKN) Combination to PZT(53/47) for High Strain Applications. Journal of the American Ceramic Society, 90 (2), 490–495. https://doi.org/10.1111/j.1551-2916.2006.01450.x
  18. Widanarto, W., Wulandari, R., Rahmawati, D., Cahyanto, W. T., Sari, K., Effendi, M. et al. (2024). Microwave irradiation-induced yield enhancement of coconut shell biomass-derived graphene-like material. Physica Scripta, 99 (6), 065949. https://doi.org/10.1088/1402-4896/ad4691
  19. Mansouri, B., Rafiei, M., Ebrahimzadeh, I., Naeimi, F., Barekat, M. (2023). The effect of milling time and heat treatment on the synthesis of the Cr2AlC MAX phase. Canadian Metallurgical Quarterly, 63 (3), 970–980. https://doi.org/10.1080/00084433.2023.2251210
  20. Effendi, M., Solihah, E., Kurniawan, C., Cahyanto, W. T., Widanarto, W. (2020). Transformation of Structure, Magnetic Properties and Microwave Absorption Capability in Nd-Doped Strontium Hexaferrite. Key Engineering Materials, 855, 255–260. https://doi.org/10.4028/www.scientific.net/kem.855.255
  21. Moya, B. R., Iglesias-Jaime, A. C., Silva, A. C., Peláiz-Barranco, A., Guerra, J. D. S. (2024). Structural and dielectric features of (Bi0.5Na0.5)1−xBaxTiO3 lead-free ferroelectric ceramics: An approach to the phase diagram. Journal of Applied Physics, 135 (16). https://doi.org/10.1063/5.0191402
  22. Pham, T. H. N., Hua, P. H., Ngo, Q. B., Ha, T. K., Nguyen, V. T., Nguyen, C. T., Pham, Q. A. (2024). The effect of carbon black percentage on mechanical properties and microstructure of polybutylene terephthalate/polyamide 6/carbon black blends. Eastern-European Journal of Enterprise Technologies, 1 (12 (127)), 20–26. https://doi.org/10.15587/1729-4061.2024.299067
  23. Krauss, W., Schütz, D., Mautner, F. A., Feteira, A., Reichmann, K. (2010). Piezoelectric properties and phase transition temperatures of the solid solution of (1−x)(Bi0.5Na0.5)TiO3–xSrTiO3. Journal of the European Ceramic Society, 30 (8), 1827–1832. https://doi.org/10.1016/j.jeurceramsoc.2010.02.001
  24. Lin, D., Kwok, K. W. (2010). Effect of Li-substitution on piezoelectric and ferroelectric properties of (Bi0.92Na0.92−xLix)0.5Ba0.06Sr0.02TiO3 lead-free ceramics. Current Applied Physics, 10 (4), 1196–1202. https://doi.org/10.1016/j.cap.2010.02.009
  25. Widanarto, W., Effendi, M., Cahyanto, W. T., Ghoshal, S. K., Kurniawan, C., Handoko, E., Alaydrus, M. (2023). Enhanced Microwave Absorption Quality of Bio-Silica-Barium-Ferrite Composites: Interplay of Fe3+ and Si4+. Molekul, 18 (2), 266. https://doi.org/10.20884/1.jm.2023.18.2.7326
  26. Bongkarn, T., Chootin, S., Pinitsoontorn, S., Maensiri, S. (2016). Excellent piezoelectric and ferroelectric properties of KNLNTS ceramics with Fe2O3 doping synthesized by the solid state combustion technique. Journal of Alloys and Compounds, 682, 14–21. https://doi.org/10.1016/j.jallcom.2016.04.285
  27. Yang, Y., Lin, C.-S., Chen, J.-F., Hu, L., Cheng, W.-D. (2014). Magnetoelectric effects at the interfaces between nonmagnetic perovskites: Ab initio prediction. EPL (Europhysics Letters), 105 (2), 27002. https://doi.org/10.1209/0295-5075/105/27002
  28. Widanarto, W., Sahar, M. R., Ghoshal, S. K., Arifin, R., Rohani, M. S., Effendi, M. (2013). Thermal, structural and magnetic properties of zinc-tellurite glasses containing natural ferrite oxide. Materials Letters, 108, 289–292. https://doi.org/10.1016/j.matlet.2013.06.109
  29. Widanarto, W., Rahayu, F. M., Ghoshal, S. K., Effendi, M., Cahyanto, W. T. (2015). Impact of ZnO substitution on magnetic response and microwave absorption capability of strontium-natural nanoferrites. Results in Physics, 5, 253–256. https://doi.org/10.1016/j.rinp.2015.09.002
  30. Cech, O., Castkova, K., Chladil, L., Dohnal, P., Cudek, P., Libich, J., Vanysek, P. (2017). Synthesis and characterization of Na2Ti6O13 and Na2Ti6O13/Na2Ti3O7 sodium titanates with nanorod-like structure as negative electrode materials for sodium-ion batteries. Journal of Energy Storage, 14, 391–398. https://doi.org/10.1016/j.est.2017.07.008
  31. Libich, J., Minda, J., Sedlaříková, M., Vondrák, J., Máca, J., Fíbek, M. et al. (2020). Sodium-ion batteries: Electrochemical properties of sodium titanate as negative electrode. Journal of Energy Storage, 27, 101150. https://doi.org/10.1016/j.est.2019.101150
  32. Husin, H., Pontas, K., Yuliana Sy, Y. S., Syawaliah, S., Saisa, S. (2014). Synthesis of Nanocrystalline of Lanthanum Doped NaTaO3 and Photocatalytic Activity for Hydrogen Production. Journal of Engineering and Technological Sciences, 46 (3), 318–327. https://doi.org/10.5614/j.eng.technol.sci.2014.46.3.6
  33. Huang, N., Liu, H., Hao, H., Yao, Z., Cao, M., Xie, J. (2019). Energy storage properties of MgO-doped 0.5Bi0•5Na0•5TiO3-0.5SrTiO3 ceramics. Ceramics International, 45 (12), 14921–14927. https://doi.org/10.1016/j.ceramint.2019.04.227
Покращення діелектричних та імпедансних властивостей п’єзоелектричних Bi0.5Na0.5TiO3-SrTiO3 матеріалів без Pb, модифікованих Fe2O3

##submission.downloads##

Опубліковано

2024-08-30

Як цитувати

Effendi, M., Rini, N. P., Kurniawan, C., Cahyanto, W. T., & Widanarto, W. (2024). Покращення діелектричних та імпедансних властивостей п’єзоелектричних Bi0.5Na0.5TiO3-SrTiO3 матеріалів без Pb, модифікованих Fe2O3. Eastern-European Journal of Enterprise Technologies, 4(12 (130), 49–57. https://doi.org/10.15587/1729-4061.2024.307930

Номер

Розділ

Матеріалознавство