Розробка процедури компенсації крайового ефекту для усунення структурних спотворень під час частотної фільтрації

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2024.308369

Ключові слова:

високочастотна фільтрація, фільтр Гауса, крайовий ефект, спотворення структури, астрономічне зображення

Анотація

Об'єктом дослідження є процес фільтрації астрономічних кадрів, які містять зображення потенційних об'єктів Сонячної системи. Для розпізнавання зображення кожного такого об'єкта на контрасті з фоновою підкладкою кадру необхідно проводити частотну фільтрацію зображення. Будь-яка частотна фільтрація з використанням різних фільтрів зображення спрямована на зменшення динамічного діапазону фонової підкладки. Також частотна фільтрація призводить до підвищення відношення сигнал/шум всього зображення, або його фрагментів залежно від конфігурації. Проте виявленим проблемним місцем кожного зображення під час частотної фільтрації є спотворення структури його країв. Тому для вирішення цієї проблеми було запропоновано процедуру компенсації крайового ефекту для усунення структурних спотворень під час частотної фільтрації.

Доповнення зображення бордюрами з усіх боків і розширеного доповненого зображення дозволило ввести формальний зв'язок значень пікселів розширеного фрагмента зображення зі значеннями пікселів розширеного початкового зображення. Тестування проходило із використанням високочастотного фільтра Гауса. Використання розробленої процедури компенсації крайового ефекту дозволило усунути спотворення структури країв зображення.

Розроблена процедура компенсації крайового ефекту була апробована практично в рамках проекту CoLiTec. Вона була запроваджена на етапі внутрішньокадрової обробки програмного забезпечення Lemur.

Дослідження показало, що застосування розробленої процедури компенсації крайового ефекту дозволяє усунути артефакти зображення в порівнянні зі звичайною фільтрацією без урахування крайового ефекту. Також завдяки компенсації крайового ефекту було усунуто структурні спотворення зображення, а відношення сигнал/шум було збільшено у 7–10 раз

Біографії авторів

Володимир Петрович Власенко, Національного центру управління та випробувань космічних засобів

Кандидат технічних наук

Центр космічних досліджень та зв’язку

Сергій Васильович Хламов, SoftServe

Кандидат технічних наук, лідер з автоматизованого тестування

Вадим Євгенович Саваневич, Харківський національний університет радіоелектроніки

Доктор технічних наук, професор

Кафедра системотехніки

Олександр Володимирович Вовк, Харківський національний університет радіоелектроніки

Кандидат технічних наук, доцент

Кафедра медіасистем та технологій

Еміль Рафікович Гаджиєв, Харківський національний університет радіоелектроніки

Кафедра системотехніки

Єгор Анатолійович Бондар, Харківський національний університет радіоелектроніки

Кафедра системотехніки

Yuriy Netrebin, INTIVE Limited

Software Automation QA Engineer

Посилання

  1. Wheeler, L., Dotson, J., Aftosmis, M., Coates, A., Chomette, G., Mathias, D. (2024). Risk assessment for asteroid impact threat scenarios. Acta Astronautica, 216, 468–487. https://doi.org/10.1016/j.actaastro.2023.12.049
  2. Troianskyi, V., Kankiewicz, P., Oszkiewicz, D. (2023). Dynamical evolution of basaltic asteroids outside the Vesta family in the inner main belt. Astronomy & Astrophysics, 672, A97. https://doi.org/10.1051/0004-6361/202245678
  3. Troianskyi, V., Godunova, V., Serebryanskiy, A., Aimanova, G., Franco, L., Marchini, A. et al. (2024). Optical observations of the potentially hazardous asteroid (4660) Nereus at opposition 2021. Icarus, 420, 116146. https://doi.org/10.1016/j.icarus.2024.116146
  4. Khalil, M., Said, M., Osman, H., Ahmed, B., Ahmed, D., Younis, N. et al. (2019). Big data in astronomy: from evolution to revolution. International Journal of Advanced Astronomy, 7 (1), 11–14. https://doi.org/10.14419/ijaa.v7i1.18029
  5. Adam, G. K., Kontaxis, P. A., Doulos, L. T., Madias, E.-N. D., Bouroussis, C. A., Topalis, F. V. (2019). Embedded Microcontroller with a CCD Camera as a Digital Lighting Control System. Electronics, 8 (1), 33. https://doi.org/10.3390/electronics8010033
  6. Vavilova, I., Pakuliak, L., Babyk, I., Elyiv, A., Dobrycheva, D., Melnyk, O. (2020). Surveys, Catalogues, Databases, and Archives of Astronomical Data. Knowledge Discovery in Big Data from Astronomy and Earth Observation, 57–102. https://doi.org/10.1016/b978-0-12-819154-5.00015-1
  7. Zhang, Y., Zhao, Y., Cui, C. (2002). Data mining and knowledge discovery in database of astronomy. Progress in Astronomy, 20 (4), 312–323.
  8. Chalyi, S., Levykin, I., Biziuk, A., Vovk, A., Bogatov, I. (2020). Development of the technology for changing the sequence of access to shared resources of business processes for process management support. Eastern-European Journal of Enterprise Technologies, 2 (3 (104)), 22–29. https://doi.org/10.15587/1729-4061.2020.198527
  9. Khlamov, S., Savanevych, V., Tabakova, I., Trunova, T. (2022). The astronomical object recognition and its near-zero motion detection in series of images by in situ modeling. 2022 29th International Conference on Systems, Signals and Image Processing (IWSSIP). https://doi.org/10.1109/iwssip55020.2022.9854475
  10. Oszkiewicz, D., Troianskyi, V., Galád, A., Hanuš, J., Ďurech, J., Wilawer, E. et al. (2023). Spins and shapes of basaltic asteroids and the missing mantle problem. Icarus, 397, 115520. https://doi.org/10.1016/j.icarus.2023.115520
  11. Savanevych, V., Khlamov, S., Briukhovetskyi, O., Trunova, T., Tabakova, I. (2023). Mathematical Methods for an Accurate Navigation of the Robotic Telescopes. Mathematics, 11 (10), 2246. https://doi.org/10.3390/math11102246
  12. Bellanger, M. (2024). Digital Signal Processing. Wiley. https://doi.org/10.1002/9781394182695
  13. Savanevych, V., Khlamov, S., Vlasenko, V., Deineko, Z., Briukhovetskyi, O., Tabakova, I., Trunova, T. (2022). Formation of a typical form of an object image in a series of digital frames. Eastern-European Journal of Enterprise Technologies, 6 (2 (120)), 51–59. https://doi.org/10.15587/1729-4061.2022.266988
  14. Chen, S., Feng, H., Pan, D., Xu, Z., Li, Q., Chen, Y. (2021). Optical Aberrations Correction in Postprocessing Using Imaging Simulation. ACM Transactions on Graphics, 40 (5), 1–15. https://doi.org/10.1145/3474088
  15. Klette, R. (2014). Concise computer vision. An Introduction into Theory and Algorithms. Springer. https://doi.org/10.1007/978-1-4471-6320-6
  16. Khlamov, S., Tabakova, I., Trunova, T. (2022). Recognition of the astronomical images using the Sobel filter. 2022 29th International Conference on Systems, Signals and Image Processing (IWSSIP). https://doi.org/10.1109/iwssip55020.2022.9854425
  17. Lösler, M., Eschelbach, C., Riepl, S. (2018). A modified approach for automated reference point determination of SLR and VLBI telescopes. Tm - Technisches Messen, 85 (10), 616–626. https://doi.org/10.1515/teme-2018-0053
  18. Dhanalakshmi, R., Bhavani, N. P. G., Raju, S. S., Shaker Reddy, P. C., Mavaluru, D., Singh, D. P., Batu, A. (2022). Onboard Pointing Error Detection and Estimation of Observation Satellite Data Using Extended Kalman Filter. Computational Intelligence and Neuroscience, 2022, 1–8. https://doi.org/10.1155/2022/4340897
  19. Krishnan, A. P., Belthangady, C., Nyby, C., Lange, M., Yang, B., Royer, L. A. (2020). Optical Aberration Correction via Phase Diversity and Deep Learning. https://doi.org/10.1101/2020.04.05.026567
  20. Khlamov, S., Vlasenko, V., Savanevych, V., Briukhovetskyi, O., Trunova, T., Chelombitko, V., Tabakova, I. (2022). Development of computational method for matched filtration with analytical profile of the blurred digital image. Eastern-European Journal of Enterprise Technologies, 5 (4 (119)), 24–32. https://doi.org/10.15587/1729-4061.2022.265309
  21. Khlamov, S., Savanevych, V., Vlasenko, V., Briukhovetskyi, O., Trunova, T., Levykin, I. et al. (2023). Development of the matched filtration of a blurred digital image using its typical form. Eastern-European Journal of Enterprise Technologies, 1 (9 (121)), 62–71. https://doi.org/10.15587/1729-4061.2023.273674
  22. Burger, W., Burge, M. J. (2022). Digital Image Processing. In Texts in Computer Science. Springer International Publishing. https://doi.org/10.1007/978-3-031-05744-1
  23. Vlasenko, V., Khlamov, S., Savanevych, V. (2024). Devising a procedure for the brightness alignment of astronomical frames background by a high frequency filtration to improve accuracy of the brightness estimation of objects. Eastern-European Journal of Enterprise Technologies, 2 (2 (128)), 31–38. https://doi.org/10.15587/1729-4061.2024.301327
  24. Vlasenko, V., Khlamov, S., Savanevych, V., Trunova, T., Deineko, Z., Tabakova, I. (2024). Development of a procedure for fragmenting astronomical frames to accelerate high frequency filtering. Eastern-European Journal of Enterprise Technologies, 3 (9 (129)), 70–77. https://doi.org/10.15587/1729-4061.2024.306227
  25. Rattanasoon, S., Semenko, E., Mkrtichian, D., Poshyachinda, S. (2024). Spectroscopic Devices for Asteroseismology With Small Telescopes in NARIT. Bulletin de La Société Royale Des Sciences de Liège, 96–101. https://doi.org/10.25518/0037-9565.11612
  26. Kudzej, I., Savanevych, V. E., Briukhovetskyi, O. B., Khlamov, S. V., Pohorelov, A. V., Vlasenko, V. P. et al. (2019). CoLiTecVS – A new tool for the automated reduction of photometric observations. Astronomische Nachrichten, 340 (1-3), 68–70. https://doi.org/10.1002/asna.201913562
  27. Troianskyi, V., Kashuba, V., Bazyey, O., Okhotko, H., Savanevych, V., Khlamov, S., Briukhovetskyi, A. (2023). First reported observation of asteroids 2017 AB8, 2017 QX33, and 2017 RV12. Contributions of the Astronomical Observatory Skalnaté Pleso, 53 (2). https://doi.org/10.31577/caosp.2023.53.2.5
  28. Kudak, V. I., Epishev, V. P., Perig, V. M., Neybauer, I. F. (2017). Determining the orientation and spin period of TOPEX/Poseidon satellite by a photometric method. Astrophysical Bulletin, 72 (3), 340–348. https://doi.org/10.1134/s1990341317030233
  29. Khlamov, S., Savanevych, V., Briukhovetskyi, O., Trunova, T. (2023). Big Data Analysis in Astronomy by the Lemur Software. 2023 IEEE International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo). https://doi.org/10.1109/ukrmico61577.2023.10380398
  30. Khlamov, S., Savanevych, V., Tabakova, I., Kartashov, V., Trunova, T., Kolendovska, M. (2024). Machine Vision for Astronomical Images using The Modern Image Processing Algorithms Implemented in the CoLiTec Software. Measurements and Instrumentation for Machine Vision, 269–310. https://doi.org/10.1201/9781003343783-12
  31. Dougherty, E. R. (2020). Digital Image Processing Methods. CRC Press. https://doi.org/10.1201/9781003067054
  32. Gonzalez, R., Woods, R. (2018). Digital image processing. Pearson. Available at: https://dl.icdst.org/pdfs/files4/01c56e081202b62bd7d3b4f8545775fb.pdf
  33. Khlamov, S., Savanevych, V., Briukhovetskyi, O., Tabakova, I., Trunova, T. (2022). Astronomical Knowledge Discovery in Databases by the CoLiTec Software. 2022 12th International Conference on Advanced Computer Information Technologies (ACIT). https://doi.org/10.1109/acit54803.2022.9913188
  34. Shvedun, V. O., Khlamov, S. V. (2016). Statistical modeling for determination of perspective number of advertising legislation violations. Actual Problems of Economics, 184 (10), 389–396.
  35. Perova, I., Brazhnykova, Y., Miroshnychenko, N., Bodyanskiy, Y. (2020). Information Technology for Medical Data Stream Mining. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). https://doi.org/10.1109/tcset49122.2020.235399
Розробка процедури компенсації крайового ефекту для усунення структурних спотворень під час частотної фільтрації

##submission.downloads##

Опубліковано

2024-08-30

Як цитувати

Власенко, В. П., Хламов, С. В., Саваневич, В. Є., Вовк, О. В., Гаджиєв, Е. Р., Бондар, Є. А., & Netrebin, Y. (2024). Розробка процедури компенсації крайового ефекту для усунення структурних спотворень під час частотної фільтрації. Eastern-European Journal of Enterprise Technologies, 4(2 (130), 30–39. https://doi.org/10.15587/1729-4061.2024.308369