Розробка магнітного ротатора для посилення реакції виділення водню в електролізері води з протонообмінною мембраною

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2024.308944

Ключові слова:

магнітний ротатор, зелений електроліз води, виробництво водню, оптимізація конструкції

Анотація

У даному дослідженні було розроблено великомасштабний магнітний ротатор для прискорення виробництва водню. У роботі розглядається задача вибору та проектування механічних компонентів для магнітного ротатора з динамічним магнітним полем (DMF) на електростанції електролізу зеленого водню, приділяючи особливу увагу забезпеченню надійності та ефективності компонентів в умовах експлуатаційних навантажень. Мета полягає у визначенні відповідних матеріалів елементів установки (вал, зчеплення, шестерні тощо), допустимого напруження при зсуві та механізмів з’єднання за допомогою теоретичних і практичних оцінок. Метод включає в себе розрахунок допустимого напруження при зсуві для шліца на основі міцності на розрив вуглецевої сталі, застосування коефіцієнтів запасу міцності з урахуванням властивостей матеріалу та навантажень, а також визначення діаметра валу з використанням коефіцієнтів крутного моменту та ударного навантаження. Стандартні каталоги містять рекомендації щодо вибору з’єднувальних елементів, таких як зчеплення, шестерні і підшипники для забезпечення сумісності та продуктивності. Результати показують, що вал із вуглецевої сталі S30C діаметром 95 мм із допустимим напруженням при зсуві 7,8 кг/мм2 відповідає проектним вимогам. Вибрані розміри шліца та 14-полюсний асинхронний двигун потужністю 12,5 МВт відповідають вимогам системи, забезпечуючи надійну роботу. У ході обговорення наголошується на важливості балансу між теоретичними прогнозами та практичним застосуванням при оптимізації конструкції. Це підкреслює важливість врахування коефіцієнтів запасу міцності та перевірки придатності компонентів для забезпечення надійної роботи магнітного ротатора. У дослідженні представлений комплексний підхід до оптимізації конструкції, що поєднує теоретичний аналіз із практичними міркуваннями для досягнення оптимальної продуктивності та надійності. Результати проектування, отримані у дослідженні, можуть бути використані для посилення реакції виділення водню в електролізері SIEMENS Sylizer 300.

Біографії авторів

Purnami Purnami, Brawijaya University

Doctor of Engineering, Associate Professor

Department of Mechanical Engineering

Willy Satrio Nugroho, Brawijaya University

Doctor of Engineering, Assistant Professor

Department of Mechanical Engineering

Lukman Hakim, Brawijaya University

Doctor of Engineering, Associate Professor

Department of Chemistry

I Nyoman Gede Wardana, Brawijaya University

Doctor of Engineering, Professor

Department of Mechanical Engineering

Посилання

  1. Handayani, K., Krozer, Y., Filatova, T. (2017). Trade-offs between electrification and climate change mitigation: An analysis of the Java-Bali power system in Indonesia. Applied Energy, 208, 1020–1037. https://doi.org/10.1016/j.apenergy.2017.09.048
  2. Arcos, J. M. M Santos, D. M. F. (2023). The Hydrogen Color Spectrum: Techno-Economic Analysis of the Available Technologies for Hydrogen Production. Gases, 3 (1), 25–46. https://doi.org/10.3390/gases3010002
  3. Incer-Valverde, J., Korayem, A., Tsatsaronis, G., Morosuk, T. (2023). “Colors” of hydrogen: Definitions and carbon intensity. Energy Conversion and Management, 291, 117294. https://doi.org/10.1016/j.enconman.2023.117294
  4. Energy Explained. The hydrogen colour spectrum. Available at: https://www.nationalgrid.com/stories/energy-explained/hydrogen-colour-spectrum
  5. Diab, J., Fulcheri, L., Hessel, V., Rohani, V., Frenklach, M. (2022). Why turquoise hydrogen will Be a game changer for the energy transition. International Journal of Hydrogen Energy, 47 (61), 25831–25848. https://doi.org/10.1016/j.ijhydene.2022.05.299
  6. Al-Douri, A., Groth, K. M. (2024). Hydrogen production via electrolysis: State-of-the-art and research needs in risk and reliability analysis. International Journal of Hydrogen Energy, 63, 775–785. https://doi.org/10.1016/j.ijhydene.2024.03.188
  7. Grigoriev, S. A., Fateev, V. N., Bessarabov, D. G., Millet, P. (2020). Current status, research trends, and challenges in water electrolysis science and technology. International Journal of Hydrogen Energy, 45 (49), 26036–26058. https://doi.org/10.1016/j.ijhydene.2020.03.109
  8. Schmitz, R., Brandes, J., Nolte, H., Kost, C., Lux, B., Haendel, M., Held, A. (2024). Implications of hydrogen import prices for the German energy system in a model-comparison experiment. International Journal of Hydrogen Energy, 63, 566–579. https://doi.org/10.1016/j.ijhydene.2024.03.210
  9. Zainal, B. S., Ker, P. J., Mohamed, H., Ong, H. C., Fattah, I. M. R., Rahman, S. M. A. et al. (2024). Recent advancement and assessment of green hydrogen production technologies. Renewable and Sustainable Energy Reviews, 189, 113941. https://doi.org/10.1016/j.rser.2023.113941
  10. Konyukhov, V. K. (2011). Spin states ofpara-water andortho-water molecule in gas and liquid phases. Physics and Chemistry of Liquids, 49 (3), 343–346. https://doi.org/10.1080/00319100903456154
  11. Chen, Y.-J., Li, Y.-H., Chen, C.-Y. (2022). Studying the Effect of Electrode Material and Magnetic Field on Hydrogen Production Efficiency. Magnetochemistry, 8 (5), 53. https://doi.org/10.3390/magnetochemistry8050053
  12. da Silva Falcão, B., Jeong, K., Al Ghafri, S., Robinson, N., Tang, L., Kozielski, K., Johns, M. L. (2024). Ortho- to para-hydrogen catalytic conversion kinetics. International Journal of Hydrogen Energy, 62, 345–351. https://doi.org/10.1016/j.ijhydene.2024.02.380
  13. Purnami, P., Winarto, W., Sofi’i, Y. K., Nugroho, W. S., Wardana, I. N. G. (2023). The enhancement of magnetic field assisted water electrolysis hydrogen production from the compact disc recordable waste polycarbonate layer. International Journal of Hydrogen Energy, 48 (48), 18154–18165. https://doi.org/10.1016/j.ijhydene.2023.01.329
  14. Purnami, P., Hamidi, N., Nur Sasongko, M., Siswanto, E., Widhiyanuriyawan, D., Pambudi Tama, I. et al. (2022). Enhancement of hydrogen production using dynamic magnetic field through water electrolysis. International Journal of Energy Research, 46 (6), 7309–7319. https://doi.org/10.1002/er.7638
  15. Purnami, P., Satrio Nugroho, W., Hamidi, N., W, W., Schulze, A. A., Wardana, I. N. G. (2024). Double deep Q network intelligent adaptive control for highly efficient dynamic magnetic field assisted water electrolysis. International Journal of Hydrogen Energy, 59, 457–464. https://doi.org/10.1016/j.ijhydene.2024.01.321
  16. Purnami, P., Satrio Nugroho, W., Sofi’i, Y. K., Wardana, I. N. G. (2024). The impact of sodium lauryl sulfate on hydrogen evolution reaction in water electrolysis. International Journal of Hydrogen Energy, 79, 1395–1405. https://doi.org/10.1016/j.ijhydene.2024.07.127
  17. Purnami, P., Willy Satrio, N., Sofi’i, Y. K., Wardana, I. N. G. (2024). The impact of mechanical vibration at cathode on hydrogen yields in water electrolysis. Journal of Power Sources, 615, 235075. https://doi.org/10.1016/j.jpowsour.2024.235075
  18. Handiwibowo, G. A., Nadlifatin, R., Bhawika, G. W., Noer, L. R. (2021). The Contribution of Absorptive Capacities to New Innovative Product Development Performance: A Conceptual Framework. International Journal of Mechanical Engineering Technologies and Applications, 2 (1), 73. https://doi.org/10.21776/mechta.2021.002.01.11
  19. Setyarini, P. H., Gapsari, F., Harjo, A. O. R. (2022). Surface Characterization on Electrophoretic Deposition Oof 316l Stainless Steel with Dissolved Chitosan for Biomedical Application. International Journal of Mechanical Engineering Technologies and Applications, 3 (1), 40. https://doi.org/10.21776/mechta.2022.003.01.6
  20. Juniansyah, G., Lathifah, S. M., Prajitno, D. H. (2021). Synthesis Polymer Matrix Composite Epoxy-FeNdB-Mn for Radar Absorbing Material Application. International Journal of Mechanical Engineering Technologies and Applications, 2 (1), 1. https://doi.org/10.21776/mechta.2021.002.01.1
  21. Akbar, D. H., Purnami, P., Budio, S. P. (2020). Influence of Surface Roughness and Paint Coating on Corrosion Rate. International Journal of Mechanical Engineering Technologies and Applications, 1 (1), 15. https://doi.org/10.21776/mechta.2020.001.01.3
  22. Habiby, M. N. A., Istianto, P. V., Fahmi, M. (2023). Optimization of cutting direction parameters for a cnc milling machining process pocket on structure and surface roughness on postep motorcycle spare parts. International Journal of Mechanical Engineering Technologies and Applications, 4 (2), 135–143. https://doi.org/10.21776/mechta.2023.004.02.3
  23. Widodo, T. D., Raharjo, R., Risonarta, V. Y., Bintarto, R., Kusumaningsih, H., Saputra, M. H. (2020). The Effect of Sand Blasting on Shear Stress of Fiberglass – Shorea spp. Composite. International Journal of Mechanical Engineering Technologies and Applications, 1 (1), 1. https://doi.org/10.21776/mechta.2020.001.01.1
  24. Anggamawarti, M. F., Alviari, L. P., Sanjiwani, Y., Risonarta, V. Y. (2020). Quality Analysis of 5.56 mm Ammunition Defect using Taguchi Method: A Review. International Journal of Mechanical Engineering Technologies and Applications, 1 (1), 29. https://doi.org/10.21776/mechta.2020.001.01.5
  25. Ihsan, M. A., Sumantri, Y., Irawan, Y. S. (2024). Integration of taguchi and promethee for cnc milling machining parameter optimization on AA6061. International Journal of Mechanical Engineering Technologies and Applications, 5 (1), 96–107. https://doi.org/10.21776/mechta.2024.005.01.10
  26. Flamm, B., Peter, C., Büchi, F. N., Lygeros, J. (2021). Electrolyzer modeling and real-time control for optimized production of hydrogen gas. Applied Energy, 281, 116031. https://doi.org/10.1016/j.apenergy.2020.116031
  27. Ravichandran, S., Venkatkarthick, R., Sankari, A., Vasudevan, S., Jonas Davidson, D., Sozhan, G. (2014). Platinum deposition on the nafion membrane by impregnation reduction using nonionic surfactant for water electrolysis – An alternate approach. Energy, 68, 148–151. https://doi.org/10.1016/j.energy.2014.02.077
  28. Xu, Y., Wang, C., Huang, Y., Fu, J. (2021). Recent advances in electrocatalysts for neutral and large-current-density water electrolysis. Nano Energy, 80, 105545. https://doi.org/10.1016/j.nanoen.2020.105545
  29. Peter, C., Vrettos, E., Büchi, F. N. (2022). Polymer electrolyte membrane electrolyzer and fuel cell system characterization for power system frequency control. International Journal of Electrical Power & Energy Systems, 141, 108121. https://doi.org/10.1016/j.ijepes.2022.108121
  30. Boichenko, S., Danilin, O., Shkilniuk, I., Yakovlieva, A., Khotian, A., Pavlovskyi, M. et al. (2023). Substantiating the expediency of using hydrogen fuel cells in electricity generation. Eastern-European Journal of Enterprise Technologies, 3 (8 (123)), 17–29. https://doi.org/10.15587/1729-4061.2023.280046
  31. Mustafa, F. F., Hussein, O., Fakhri, O. F., Sabri, A. H. (2020). Design and development of high-accuracy machine for wire bending. Eastern-European Journal of Enterprise Technologies, 5 (1 (107)), 29–35. https://doi.org/10.15587/1729-4061.2020.202184
  32. Lytvyn, V., Vysotska, V., Shatskykh, V., Kohut, I., Petruchenko, O., Dzyubyk, L. et al. (2019). Design of a recommendation system based on collaborative filtering and machine learning considering personal needs of the user. Eastern-European Journal of Enterprise Technologies, 4 (2 (100)), 6–28. https://doi.org/10.15587/1729-4061.2019.175507
  33. Kvasnikov, V., Kvashuk, D., Prygara, M., Legeta, J. (2023). Designing tools for assessing the reliability of electric motor torque measurements by using identifiers of anomalous deviations in a noisy signal system. Eastern-European Journal of Enterprise Technologies, 6 (5 (126)), 15–25. https://doi.org/10.15587/1729-4061.2023.292187
  34. Suga, K., Sularso (1997). Dasar Perencanaan dan Pemilihan Elemen Mesin. Jakarta: Pradnya Paramitha.
  35. Nanda, R. A., Karyadi, K., Roban, R., Dewadi, F. M. (2024). RPM measurement comparison using a thermometer and LM393 microcontroller. International Journal of Mechanical Engineering Technologies and Applications, 5 (1), 51–62. https://doi.org/10.21776/mechta.2024.005.01.6
  36. Kvasnikov, V., Kvashuk, D., Prygara, M., Shelukha, O., Molchanova, K. (2024). Devising a technique for measuring torque of electric motors using machine vision. Eastern-European Journal of Enterprise Technologies, 1 (5 (127)), 16–32. https://doi.org/10.15587/1729-4061.2024.298513
  37. Darmo, S., Soenoko, R., Siswanto, E., Widodo, T. D. (2019). The influence of the pack decarburizing process with Pinctada maxima shell powder agent on the properties of high carbon steel. Eastern-European Journal of Enterprise Technologies, 1 (12 (97)), 6–13. https://doi.org/10.15587/1729-4061.2019.153762
  38. Xu, H., Wang, P., Ma, H., He, D., Zhao, X., Yang, Y. (2022). Analysis of axial and overturning ultimate load-bearing capacities of deep groove ball bearings under combined loads and arbitrary rotation speed. Mechanism and Machine Theory, 169, 104665. https://doi.org/10.1016/j.mechmachtheory.2021.104665
  39. Huang, W., Tian, H., Ma, H., Wang, P., Yang, Y., Han, Q. (2023). An improved method for calculating the lateral and angular stiffness of spline couplings considering parallel misalignment. Mechanism and Machine Theory, 189, 105436. https://doi.org/10.1016/j.mechmachtheory.2023.105436
  40. Morozyuk, L., Hrudka, B., Yuzhakova, O. (2018). Selection of new working fluids for a heat-using compression refrigerating machine with the block «turbine- compressor». Eastern-European Journal of Enterprise Technologies, 5 (8 (95)), 33–40. https://doi.org/10.15587/1729-4061.2018.142061
  41. Yurianto, Y., Pratikto, P., Soenoko, R., Suprapto, W. (2019). Effect of quench and temper on hardness and wear of HRP steel (armor steel candidate). Eastern-European Journal of Enterprise Technologies, 3 (12 (99)), 55–61. https://doi.org/10.15587/1729-4061.2019.156799
  42. Rahman, A., Winarto, W., Siswanto, E. (2024). Optimization of shell and tube heat exchanger design with inclined baffles. International Journal of Mechanical Engineering Technologies and Applications, 5 (1), 63–72. https://doi.org/10.21776/mechta.2024.005.01.7
  43. Sugiono, S., Nugroho, W. S., Wiryawan, E., Oktavianty, O., Sulistyarini, D. H. (2023). Controlling the train car´s center of gravity (COG) position based on train load levelling. Journal of Applied Research and Technology, 21 (6), 1057–1065. https://doi.org/10.22201/icat.24486736e.2023.21.6.1977
  44. Quan, Z., Ge, L., Wei, Z., Li, Y. W., Quan, L. (2021). A Survey of Powertrain Technologies for Energy-Efficient Heavy-Duty Machinery. Proceedings of the IEEE, 109 (3), 279–308. https://doi.org/10.1109/jproc.2021.3051555
  45. de Souza, D. F., Salotti, F. A. M., Sauer, I. L., Tatizawa, H., de Almeida, A. T., Kanashiro, A. G. (2022). A Performance Evaluation of Three-Phase Induction Electric Motors between 1945 and 2020. Energies, 15 (6), 2002. https://doi.org/10.3390/en15062002
  46. Sutrisno, S., Soenoko, R., Irawan, Y. S., Widodo, T. D. (2021). Effect of coconut fiber treatment with limestone water media on the fiber surface, wettability, and interface shear strength. Eastern-European Journal of Enterprise Technologies, 1 (6 (109)), 48–56. https://doi.org/10.15587/1729-4061.2021.217730
  47. Taufik, A., Pratikto, P., Suprapto, A., Sonief, A. A. (2021). Analysis of the influence of hot rolled plate steel treatment using temper and quench-temper method on vickers hardness number enhancement. Eastern-European Journal of Enterprise Technologies, 4 (12 (112)), 18–24. https://doi.org/10.15587/1729-4061.2021.233349
  48. Soenoko, R., Purnami, Utami Dewi, F. G. (2017). Second stage cross flow turbine performance. ARPN Journal of Engineering and Applied Sciences, 12 (6). Available at: http://www.arpnjournals.org/jeas/research_papers/rp_2017/jeas_0317_5818.pdf
  49. Sugiarto, S., Soenoko, R., Purnowidodo, A., Irawan, Y. S. (2018). The effect of external magnetic flux field in the QTS weldment on the change of fatigue crack propagation behaviors. Eastern-European Journal of Enterprise Technologies, 2 (12 (92)), 4–11. https://doi.org/10.15587/1729-4061.2018.122919
  50. Sugiarto, Purnowidodo, A., Soenoko, R., Irawan, Y. S., Sonief, A. A. (2016). The use of magnetic flux to the welding of hot roll quench tempered steel. ARPN Journal of Engineering and Applied Sciences, 11 (2), 1061–1064. Available at: http://www.arpnjournals.org/jeas/research_papers/rp_2016/jeas_0116_3454.pdf
  51. Sugiarto, Dr., Ma’arif, Moch. S., Purwanto, H., Ery Mahendra, W. J., Oswari, H. (2023). Characteristic of friction stir welding weld joint of AA 6061 on initial temperature difference. MM Science Journal, 2023 (1). https://doi.org/10.17973/mmsj.2023_03_2022094
  52. Wijayanti, W., Sasongko, M. N., Purnami (2016). The calorific values of solid and liquid yields consequenced by temperatures of mahogany pyrolysis. ARPN Journal of Engineering and Applied Sciences, 11 (2), 917–921. Available at: http://www.arpnjournals.org/jeas/research_papers/rp_2016/jeas_0116_3427.pdf
  53. Sunardi, Choiron, Moch. A., Sugiarto, Setyarini, P. H. (2023). Development of fishing boat collision models in extreme weather using computer simulation. EUREKA: Physics and Engineering, 2, 149–159. https://doi.org/10.21303/2461-4262.2023.002601
  54. Sunardi, E. F., Choiron, M. A., Sugiarto, A. W. M., Setyarini, P. H., Nurwahyudi, A. (2024). Fishing Vessel Safety in Indonesia: A Study of Accident Characteristics and Prevention Strategies. International Journal of Safety and Security Engineering, 14 (2), 499–511. https://doi.org/10.18280/ijsse.140217
Розробка магнітного ротатора для посилення реакції виділення водню в електролізері води з протонообмінною мембраною

##submission.downloads##

Опубліковано

2024-10-25

Як цитувати

Purnami, P., Nugroho, W. S., Hakim, L., & Wardana, I. N. G. (2024). Розробка магнітного ротатора для посилення реакції виділення водню в електролізері води з протонообмінною мембраною . Eastern-European Journal of Enterprise Technologies, 5(1 (131), 6–16. https://doi.org/10.15587/1729-4061.2024.308944

Номер

Розділ

Виробничо-технологічні системи