Синтез мембран поліефірсульфон/діоксид титану: аналіз морфології, механічних властивостей та ефективності фільтрації води

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2024.316523

Ключові слова:

антиобростання, виготовлення, фільтрація, мембрани, проникність, поліефірсульфон, діоксид титану

Анотація

Зростаючий попит на чисту воду, зумовлений зростанням населення, урбанізацією та промисловою діяльністю, призвів до значних проблем у сфері охорони здоров'я, економіки та довкілля. Ефективні технології очищення води мають важливе значення для вирішення цієї проблеми. У цьому дослідженні вивчається використання мембран на основі поліефірсульфонового (ПЕС) полімеру, армованих наночастинками діоксиду титану (TiO2), для боротьби з обростанням. Мембрани були виготовлені з використанням методу обробки в електричному полі. Скануюча електронна мікроскопія (SEM) виявила розподіл пор за розміром від 1,170 мкм до 7,122 мкм, демонструючи, що цей метод може бути налаштований для створення мембран з певними фільтраційними характеристиками. Аналіз за допомогою атомно-силового мікроскопа (АСМ) показав шорсткість поверхні від 150 до 500 нм, що свідчить про те, що морфологію поверхні мембрани можна змінювати для покращення її продуктивності. Механічні випробування показали, що міцність на розрив мембран змінювалася залежно від додавання TiO2: чиста мембрана з ПЕП (TI0) мала міцність на розрив 2,12 МПа, тоді як мембрана TI1 (20 % ПЕП, 1 % TiO2) демонструвала зниження до 1,84 МПа. Мембрана TI2 (30 % PES, 1 % TiO2) показала збільшення міцності на розрив до 3,86 МПа, що підтверджує підсилюючий вплив TiO2 на механічні властивості мембрани. Випробування на проникність чистої води (CWP) показало значення потоку 2558,9 л/м2-год/бар для TI0, 1263,1 л/м2-год/бар для TI1 і 2763,9 л/м2-год/бар для TI2, що підкреслює оптимальний баланс механічної міцності і проникності в TI2. Композитна мембрана PES/TiO2, виготовлена з використанням методу електричного поля, є перспективною для фільтрації води завдяки своїй підвищеній проникності, забезпечуючи ефективне рішення для очищення води

Біографії авторів

Agung Mataram, Universitas Sriwijaya

Doctor of Philosophy (PhD), Associate Professor

Department of Mechanical Engineering

Aneka Firdaus, Universitas Sriwijaya

Master of Engineering, Lecturer

Department of Mechanical Engineering

Muhammad Yanis, Universitas Sriwijaya

Doctor of Philosophy (PhD), Associate Professor

Department of Mechanical Engineering

Rahma Dani, Universitas Sriwijaya

Master of Physics Education, Student

Department of Physics Education

Subriyer Nasir, Universitas Sriwijaya

Doctor of Philosophy (PhD), Professor

Department of Chemical Engineering

Ahmad Fauzi Ismail, Universiti Teknologi Malaysia

Doctor of Philosophy (PhD), Professor

Advanced Membrane Technology Research Centre (AMTEC)

Mohd Hafiz Dzarfan Othman, Universiti Teknologi Malaysia

Doctor of Philosophy (PhD), Professor

Advanced Membrane Technology Research Centre (AMTEC)

Посилання

  1. Progress on drinking water, sanitation and hygiene 2000–2017. Special focus on inequalities (2019). UNICEF. Available at: https://www.unicef.org/reports/progress-on-drinking-water-sanitation-and-hygiene-2019
  2. Babaei, A. A., Reshadatian, N., Feizi, R. (2024). A state of the art-mini review on the sources, contamination, analysis, and consequences of microplastics in water. Results in Engineering, 23, 102827. https://doi.org/10.1016/j.rineng.2024.102827
  3. Kurniawan, T. A., Bandala, E. R., Othman, M. H. D., Goh, H. H., Anouzla, A., Chew, K. W. et al. (2024). Implications of climate change on water quality and sanitation in climate hotspot locations: A case study in Indonesia. Water Supply, 24 (2), 517–542. https://doi.org/10.2166/ws.2024.008
  4. Mousa, H. M., Fahmy, H. S., Ali, G. A. M., Abdelhamid, H. N., Ateia, M. (2022). Membranes for Oil/Water Separation: A Review. Advanced Materials Interfaces, 9 (27). https://doi.org/10.1002/admi.202200557
  5. Tomczak, W., Gryta, M. (2023). The Application of Polyethersulfone Ultrafiltration Membranes for Separation of Car Wash Wastewaters: Experiments and Modelling. Membranes, 13 (3), 321. https://doi.org/10.3390/membranes13030321
  6. Vafaei, K., Ashtiani, F. Z., Karimi, M., Ghorabi, S. (2023). Engineering hydrophobic surface on polyethersulfone membrane with bio‐inspired coating for desalination with direct contact membrane distillation. Polymers for Advanced Technologies, 34 (8), 2419–2436. https://doi.org/10.1002/pat.6061
  7. Anucha, C. B., Altin, I., Bacaksiz, E., Stathopoulos, V. N. (2022). Titanium dioxide (TiO₂)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: In the light of modification strategies. Chemical Engineering Journal Advances, 10, 100262. https://doi.org/10.1016/j.ceja.2022.100262
  8. Abed, I. A., Waisi, B. I. (2024). Performance Enhancement of Polyethersulfone-Based Ultrafiltration Membrane Decorated by Titanium Dioxide Nanoparticles for Dye Filtration. Ecological Engineering & Environmental Technology, 25 (5), 265–273. https://doi.org/10.12912/27197050/186182
  9. Ehsani, M., Aroujalian, A. (2019). Fabrication of electrospun polyethersulfone/titanium dioxide (PES/TiO2) composite nanofibers membrane and its application for photocatalytic degradation of phenol in aqueous solution. Polymers for Advanced Technologies, 31 (4), 772–785. https://doi.org/10.1002/pat.4813
  10. Ding, C., Qin, X., Tian, Y., Cheng, B. (2022). PES membrane surface modification via layer-by-layer self-assembly of GO@TiO2 for improved photocatalytic performance. Journal of Membrane Science, 659, 120789. https://doi.org/10.1016/j.memsci.2022.120789
  11. Yao, J., Shen, H., Gong, Y., Cheng, C. (2023). Preparation of a Cation Exchange Membrane by a Sol-Gel Method-Based Polyvinyl Alcohol to Improve Alkali Recovery via Diffusion Dialysis in the Textile Industry. Separations, 10 (7), 370. https://doi.org/10.3390/separations10070370
  12. Hu, W., Yang, X., Hou, X., Zhao, Q., Liu, B., Sun, Z. et al. (2020). Novel Nanocomposite PEM Membranes with Continuous Proton Transportation Channel and Reinforcing Network Formed by Electrospinning Solution Casting Method. Macromolecular Materials and Engineering, 305 (6). https://doi.org/10.1002/mame.201900388
  13. Saleem, J., Moghal, Z. K. B., Hafeez, A., Sajjad, S., Shoaib, M., Alahmad, J., McKay, G. (2024). Stretch-Induced Spin-Cast Membranes Based on Semi-Crystalline Polymers for Efficient Microfiltration. Polymers, 16 (13), 1799. https://doi.org/10.3390/polym16131799
  14. Barambu, N. U., Bilad, M. R., Bustam, M. A., Huda, N., Jaafar, J., Narkkun, T., Faungnawakij, K. (2020). Development of Polysulfone Membrane via Vapor-Induced Phase Separation for Oil/Water Emulsion Filtration. Polymers, 12 (11), 2519. https://doi.org/10.3390/polym12112519
  15. Fazal, M. R., Mataram, A. (2023). Polyvinylidene fluoride membranes with tin (IV) dioxide (SNo2) additives: enhancing water treatment for airport eco green. Journal of Airport Engineering Technology (JAET), 3 (2), 68–74. https://doi.org/10.52989/jaet.v3i2.100
  16. Pogharian, N., Vlahovska, P. M., Olvera de la Cruz, M. (2024). Effects of Normal and Lateral Electric Fields on Membrane Mechanical Properties. The Journal of Physical Chemistry B, 128 (38), 9172–9182. https://doi.org/10.1021/acs.jpcb.4c04255
  17. Ahmadi Bonakdar, M., Rodrigue, D. (2024). Electrospinning: Processes, Structures, and Materials. Macromol, 4 (1), 58–103. https://doi.org/10.3390/macromol4010004
  18. Du, M., Yang, J., Tao, Y., Xu, B., Gu, C., Zhao, H. et al. (2024). Experimental Study on the Agglomeration Behavior of Elongated Biomass Particles in a Lifting Tube. ACS Omega, 9 (4), 4931–4948. https://doi.org/10.1021/acsomega.3c08719
  19. Yap, Y. K., Oh, P. C., Chin, E. Y. J. (2021). Development of αFe2O3-TiO2/PPOdm Mixed Matrix Membrane for CO2/CH4 Separation. E3S Web of Conferences, 287, 02013. https://doi.org/10.1051/e3sconf/202128702013
  20. Meng, J., Zhong, J., Xiao, H., Ou, J. (2021). Interfacial design of nano-TiO2 modified fly ash-cement based low carbon composites. Construction and Building Materials, 270, 121470. https://doi.org/10.1016/j.conbuildmat.2020.121470
  21. Pradeepa, P., Edwinraj, S., Ramesh Prabhu, M. (2015). Effects of ceramic filler in poly(vinyl chloride)/poly(ethyl methacrylate) based polymer blend electrolytes. Chinese Chemical Letters, 26 (9), 1191–1196. https://doi.org/10.1016/j.cclet.2015.05.007
  22. Mataram, A., Anisya, N., Nadiyah, N. A., Afriansyah, A. (2020). Fabrication Membrane of Titanium dioxide (TiO2) Blended Polyethersulfone (PES) and Polyvinilidene fluoride (PVDF): Characterization, Mechanical Properties and Water Treatment. Key Engineering Materials, 867, 159–165. https://doi.org/10.4028/www.scientific.net/kem.867.159
  23. Li, C., Guo, X., Wang, X., Fan, S., Zhou, Q., Shao, H. et al. (2018). Membrane fouling mitigation by coupling applied electric field in membrane system: Configuration, mechanism and performance. Electrochimica Acta, 287, 124–134. https://doi.org/10.1016/j.electacta.2018.06.150
  24. Wang, X., Feng, M., Liu, Y., Deng, H., Lu, J. (2019). Fabrication of graphene oxide blended polyethersulfone membranes via phase inversion assisted by electric field for improved separation and antifouling performance. Journal of Membrane Science, 577, 41–50. https://doi.org/10.1016/j.memsci.2019.01.055
  25. Seyed Shahabadi, S. M., Rabiee, H., Seyedi, S. M., Mokhtare, A., Brant, J. A. (2017). Superhydrophobic dual layer functionalized titanium dioxide/polyvinylidene fluoride- co -hexafluoropropylene (TiO 2 /PH) nanofibrous membrane for high flux membrane distillation. Journal of Membrane Science, 537, 140–150. https://doi.org/10.1016/j.memsci.2017.05.039
  26. Zhao, F., Han, X., Shao, Z., Li, Z., Li, Z., Chen, D. (2022). Effects of different pore sizes on membrane fouling and their performance in algae harvesting. Journal of Membrane Science, 641, 119916. https://doi.org/10.1016/j.memsci.2021.119916
  27. García-Ivars, J., Corbatón-Báguena, M.-J., Iborra-Clar, M.-I. (2019). Development of Mixed Matrix Membranes: Incorporation of Metal Nanoparticles in Polymeric Membranes. Nanoscale Materials in Water Purification, 153–178. https://doi.org/10.1016/b978-0-12-813926-4.00011-2
  28. Zhang, H., Zuo, M., Zhang, X., Shi, X., Yang, L., Sun, S. et al. (2021). Effect of agglomeration on the selective distribution of nanoparticles in binary polymer blends. Composites Part A: Applied Science and Manufacturing, 149, 106590. https://doi.org/10.1016/j.compositesa.2021.106590
  29. Jaiswal, M., Dudhe, R., Sharma, P. K. (2014). Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech, 5 (2), 123–127. https://doi.org/10.1007/s13205-014-0214-0
  30. Wasyłeczko, M., Wojciechowski, C., Chwojnowski, A. (2024). Polyethersulfone Polymer for Biomedical Applications and Biotechnology. International Journal of Molecular Sciences, 25 (8), 4233. https://doi.org/10.3390/ijms25084233
  31. Li, Z., Liu, M., Young, R. J. (2024). Dependence of the reinforcement of polymer-based nanocomposites upon the nanofiller geometry. Nano Materials Science. https://doi.org/10.1016/j.nanoms.2024.04.014
  32. Ravandi, R., Zeinali Heris, S., Hemmati, S., Aghazadeh, M., Davaran, S., Abdyazdani, N. (2024). Effects of chitosan and TiO2 nanoparticles on the antibacterial property and ability to self-healing of cracks and retrieve mechanical characteristics of dental composites. Heliyon, 10 (6), e27734. https://doi.org/10.1016/j.heliyon.2024.e27734
  33. Batool, M., Shafeeq, A., Haider, B., Ahmad, N. M. (2021). TiO2 Nanoparticle Filler-Based Mixed-Matrix PES/CA Nanofiltration Membranes for Enhanced Desalination. Membranes, 11 (6), 433. https://doi.org/10.3390/membranes11060433
  34. Sunar, T., Parenti, P., Tunçay, T., Özyürek, D., Annoni, M. (2023). The Effects of Nanoparticle Reinforcement on the Micromilling Process of A356/Al2O3 Nanocomposites. Journal of Manufacturing and Materials Processing, 7 (4), 125. https://doi.org/10.3390/jmmp7040125
  35. Karim, S. S., Farrukh, S., Hussain, A., Younas, M., Noor, T. (2022). The influence of polymer concentration on the morphology and mechanical properties of asymmetric polyvinyl alcohol (PVA) membrane for O2/N2 separation. Polymers and Polymer Composites, 30. https://doi.org/10.1177/09673911221090053
  36. Bilal, A., Yasin, M., Akhtar, F., Gilani, M., Almohamadi, H., Younas, M. et al. (2024). Enhancing Water Purification by Integrating Titanium Dioxide Nanotubes into Polyethersulfone Membranes for Improved Hydrophilicity and Anti-Fouling Performance. Membranes, 14 (5), 116. https://doi.org/10.3390/membranes14050116
  37. Yi, P., Jia, H., Yang, X., Fan, Y., Xu, S., Li, J. et al. (2023). Anti-biofouling properties of TiO2 coating with coupled effect of photocatalysis and microstructure. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 656, 130357. https://doi.org/10.1016/j.colsurfa.2022.130357
  38. Rudakova, A. V., Emeline, A. V., Romanychev, A. I., Bahnemann, D. W. (2021). Photoinduced hydrophilic behavior of TiO2 thin film on Si substrate. Journal of Alloys and Compounds, 872, 159746. https://doi.org/10.1016/j.jallcom.2021.159746
  39. Cai, W., Chen, H., Lin, J., Liu, Y., Wu, F., Pu, X. (2023). Inorganic nanoparticles-modified polyvinyl chloride separation membrane and enhanced anti-fouling performance. Surfaces and Interfaces, 38, 102885. https://doi.org/10.1016/j.surfin.2023.102885
  40. Deng, H., Lei, H., Luo, Y., Huan, C., Li, J., Li, H. et al. (2024). The effects of titanium dioxide nanoparticles on cadmium bioaccumulation in ramie and its application in remediation of cadmium-contaminated soil. Alexandria Engineering Journal, 86, 663–668. https://doi.org/10.1016/j.aej.2023.12.019
Синтез мембран поліефірсульфон/діоксид титану: аналіз морфології, механічних властивостей та ефективності фільтрації води

##submission.downloads##

Опубліковано

2024-12-30

Як цитувати

Mataram, A., Firdaus, A., Yanis, M., Dani, R., Nasir, S., Ismail, A. F., & Othman, M. H. D. (2024). Синтез мембран поліефірсульфон/діоксид титану: аналіз морфології, механічних властивостей та ефективності фільтрації води. Eastern-European Journal of Enterprise Technologies, 6(6 (132), 16–25. https://doi.org/10.15587/1729-4061.2024.316523

Номер

Розділ

Технології органічних та неорганічних речовин