Проектування та застосування ЗНМ для виявлення випромінень через тепловізію

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2024.317203

Ключові слова:

вихлопні гази, ЗНМ, теплові зображення, мотоциклетні викиди, якість повітря, нормативні стандарти, значення лямбда

Анотація

Викиди вихлопних газів мотоциклів, які не відповідають нормативним стандартам, становлять значну проблему для навколишнього середовища та здоров’я населення, особливо враховуючи зростання кількості мотоциклів у густонаселених районах. Ці викиди вивільняють такі забруднювачі, як оксид вуглецю (CO), вуглеводні (HC) і оксиди азоту (NOx), які сприяють погіршенню якості повітря та негативно впливають на здоров’я людини. Традиційні методи перевірки викидів із використанням газоаналізаторів, хоча й широко використовуються, мають обмеження, такі як чутливість до коливань навколишнього середовища, необхідність частого повторного калібрування та інтенсивний процес тестування, що вимагає спеціальних знань. У цьому дослідженні ці проблеми розглядаються шляхом розробки інноваційного методу виявлення викидів за допомогою згорткових нейронних мереж (ЗНМ), застосованих до теплових зображень вихлопних газів мотоциклів. Метод дослідження включає п’ять ключових етапів: збір даних, формування набору даних, проектування та навчання моделі ЗНМ, тестування моделі та перевірку. Теплові зображення були зібрані з 27 мотоциклів, що представляють різні бренди та конфігурації двигунів, поширені в Індонезії, і кожен набір зображень включав 100 зразків як для категорій, що відповідають вимогам щодо викидів, так і для невідповідних. Аналізуючи теплові моделі, модель ЗНМ навчили точно виявляти моделі горіння, що вказують на стан викидів на основі значення лямбда. Цей підхід дозволяє узагальнити модель для різних моделей мотоциклів, пропонуючи практичну адаптацію для широкого впровадження. Результати демонструють, що модель ЗНМ забезпечує високу точність прогнозування, точність, запам’ятовування та оцінку F1, що робить її надійним інструментом для оцінки відповідності вимогам щодо викидів мотоциклів. Цей підхід, заснований на ЗНМ, забезпечує практичне рішення для широкомасштабного моніторингу викидів у реальному часі та забезпечення виконання нормативних документів, зменшуючи залежність від звичайних методів. Його масштабованість і адаптивність позиціонують його як цінний прогрес у технології моніторингу викидів із значним потенціалом для підтримки екологічних стандартів і покращення управління якістю повітря

Біографії авторів

Doddi Yuniardi, Gunadarma University

Master of Electronic Engineering, Lecturer

Department of Mechanical Engineering

Advanced Mechanical Engineering Laboratory Staff

Sarifuddin Madenda, Gunadarma University

Professor of Information Technology, Lecturer, Director of Program

Department of Informatics Engineering

Information Technology Doctoral Program

Ridwan Ridwan, Gunadarma University

Professor of Mechanical Engineering, Lecturer

Department of Mechanical Engineering

Prihandoko Prihandoko, Gunadarma University

Doctor of Information Technology, Lecturer

Department of Information Technology

Abdul Azis Abdillah, University of Birmingham; Politeknik Negeri Jakarta

PhD Candidate

CASE Automotive Research Centre

Department of Mechanical Engineering

Lecturer

Department of Mechanical Engineering

Sulaksana Permana, Gunadarma University; Universitas Indonesia

Doctor of Engineering in Metallurgy and Materials, Lecturer

Department of Mechanical Engineering

Laboratory of Prof. Dr. Ir. Johny Wahyuadi S., DEA

Department of Metallurgy and Materials

Посилання

  1. Jailaubekov, Y. A., Amirgaliyeva, S. N., Baubekov, E. E., Yakovleva, N. A., Askarov, S. A., Tazabekov, A. J. (2024). Analysis of the amount and structure of solid particles PM released into the city’s atmospheric air by motor transport. Vibroengineering Procedia, 54, 244–251. https://doi.org/10.21595/vp.2024.24011
  2. Angelo, D. C., Valentina, A., Nuranissa, S. (2021). Creative Strategy for Reducing Air Pollution from Motorcycle Exhaust by Urging Urban Motorcyclists to Implement Eco-Riding Techniques. Proceedings of the International Conference on Economics, Business, Social, and Humanities (ICEBSH 2021). https://doi.org/10.2991/assehr.k.210805.033
  3. Sówka, I., Cichowicz, R., Dobrzański, M., Bezyk, Y. (2023). Analysis of Air Pollutants for a Small Paintshop by Means of a Mobile Platform and Geostatistical Methods. Energies, 16 (23), 7716. https://doi.org/10.3390/en16237716
  4. Munian, Y., Martinez-Molina, A., Miserlis, D., Hernandez, H., Alamaniotis, M. (2022). Intelligent System Utilizing HOG and CNN for Thermal Image-Based Detection of Wild Animals in Nocturnal Periods for Vehicle Safety. Applied Artificial Intelligence, 36 (1). https://doi.org/10.1080/08839514.2022.2031825
  5. Samudra, A. A., Hertasning, B., Amiro, L. (2024). Policy for handling air pollution in Jakarta: Study using System Dynamics Simulation Models. Journal of Infrastructure, Policy and Development, 8 (2). https://doi.org/10.24294/jipd.v8i2.2969
  6. Anggraini, A. N., Ummah, N. K., Fatmasari, Y., Hayati Holle, K. F. (2022). Air Quality Forecasting in DKI Jakarta Using Artificial Neural Network. MATICS, 14 (1), 1–5. https://doi.org/10.18860/mat.v14i1.13863
  7. Liang, C. (2019). Air pollution by motorcycles in big cities: the case of Bangkok. https://doi.org/10.58837/chula.is.2019.87
  8. Tsai, J.-H., Chen, J.-Y., Chiang, H.-L. (2023). Airborne Air Pollutant Emission Characteristics of Mobile Vehicles in Taiwan. Atmosphere, 14 (6), 916. https://doi.org/10.3390/atmos14060916
  9. Pandithurai, O., Jawahar, M., Arockiaraj, S., Bhavani, R. (2023). IoT technology-based vehicle pollution monitoring and control. Global Nest Journal, 25 (10), 25–32. Available at: https://journal.gnest.org/sites/default/files/Submissions/gnest_05086/gnest_05086_published.pdf
  10. Özdemir, O. B., Koz, A. (2023). 3D-CNN and Autoencoder-Based Gas Detection in Hyperspectral Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 1474–1482. https://doi.org/10.1109/jstars.2023.3235781
  11. Ismail, Budiman, D., Asri, E., Aidha, Z. R. (2022). The Smart Agriculture based on Reconstructed Thermal Image. 2022 2nd International Conference on Intelligent Technologies (CONIT), 1–6. https://doi.org/10.1109/conit55038.2022.9848229
  12. Alkalah, C. (2016). 済無 No Title No Title No Title, 19 (5), 1–23.
  13. Szostak, R., Zimnoch, M., Wachniew, P., Jasek-Kamińska, A. (2023). Self-Calibration of UAV Thermal Imagery Using Gradient Descent Algorithm. Drones, 7 (11), 683. https://doi.org/10.3390/drones7110683
  14. Murphy, R. D., Hagan, J. A., Harris, B. P., Sethi, S. A., Smeltz, T. S., Restrepo, F. (2021). Can Landsat Thermal Imagery and Environmental Data Accurately Estimate Water Temperatures in Small Streams? Journal of Fish and Wildlife Management, 12 (1), 12–26. https://doi.org/10.3996/jfwm-20-048
  15. Senthilraj, S., Shanker, N. R. (2023). Thermal Image-Based Battery Cells Fault Detection in Electric Vehicles Using Cnn Model. ARPN Journal of Engineering and Applied Sciences, 18 (18), 2101–2111. https://doi.org/10.59018/0923258
  16. Talbott-Swain, G., David, J. et al. (2023). Farming the future: An approach to precision agriculture through UAS-based thermal scanners. NASA Technical Reports. Available at: https://ntrs.nasa.gov/api/citations/20230013010/downloads/20230013010_NASA_Team4_FinalReport_final.pdf
  17. Shichao, J. (2019). Study on Testing Environment Simulation Method for Thermal Flux Density of Aerothermal. Journal of Physics: Conference Series, 1267 (1), 012065. https://doi.org/10.1088/1742-6596/1267/1/012065
  18. Xie, Y., Liu, L., Han, Z., Zhang, J. (2024). MSCL-Attention: A Multi-Scale Convolutional Long Short-Term Memory (LSTM) Attention Network for Predicting CO2 Emissions from Vehicles. Sustainability, 16 (19), 8547. https://doi.org/10.3390/su16198547
  19. Naidu, N. B., Kavyasree, T., Teja, T. R., Sarayu, P. S., Sai, S. (2024). Image Forgery Detection using ResNet50. International Journal for Research in Applied Science and Engineering Technology, 12 (3), 2222–2229. https://doi.org/10.22214/ijraset.2024.59317
  20. Smit, R., Kingston, P. (2019). Measuring On-Road Vehicle Emissions with Multiple Instruments Including Remote Sensing. Atmosphere, 10 (9), 516. https://doi.org/10.3390/atmos10090516
  21. Wadsworth, F., Muknahallipatna, S. S., Ksaibati, K. (2024). Real Time Thermal Image Based Machine Learning Approach for Early Collision Avoidance System of Snowplows. Journal of Intelligent Learning Systems and Applications, 16 (02), 107–142. https://doi.org/10.4236/jilsa.2024.162008
  22. Zhao, X., Wang, L., Zhang, Y., Han, X., Deveci, M., Parmar, M. (2024). A review of convolutional neural networks in computer vision. Artificial Intelligence Review, 57 (4). https://doi.org/10.1007/s10462-024-10721-6
  23. Prima, A., Santoso, D. B., Nurpulaela, L. (2022). Deteksi otomatis nominal uang kertas rupiah untuk tunanetra menggunakan algoritma arsitektur SSD Mobiilenetv3. Teknokom, 6 (2), 151–159. https://doi.org/10.31943/teknokom.v6i2.166
  24. Mandala, R., Safari, M. D. (2023). Penerapan Convolutional Neural Network (CNN) dan Euclidean Distance Matrices (EDM) untuk Mengurangi False Positive pada Pengenalan Aktifitas Finger Point Call. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 9 (1), 105. https://doi.org/10.26418/jp.v9i1.61716
  25. Wang, Y., Wang, H., Zhang, B., Liu, P., Wang, X., Si, S. et al. (2024). High-resolution mapping of on-road vehicle emissions with real-time traffic datasets based on big data. https://doi.org/10.5194/egusphere-2024-2791
  26. Hanif, M. Z., Saputra, W. A., Choo, Y. H., Yunus, A. P. (2024). Rupiah Banknotes Detection Comparison of The Faster R-CNN Algorithm and YOLOv5. Jurnal Infotel, 16 (3). https://doi.org/10.20895/infotel.v16i3.1189
  27. Shobayo, O., Saatchi, R., Ramlakhan, S. (2024). Convolutional Neural Network to Classify Infrared Thermal Images of Fractured Wrists in Pediatrics. Healthcare, 12 (10), 994. https://doi.org/10.3390/healthcare12100994
  28. Rivadeneira, R. E., Sappa, A. D., Vintimilla, B. X., Nathan, S., Kansal, P., Mehri, A. et al. (2021). Thermal Image Super-Resolution Challenge - PBVS 2021. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 4354–4362. https://doi.org/10.1109/cvprw53098.2021.00492
Проектування та застосування ЗНМ для виявлення випромінень через тепловізію

##submission.downloads##

Опубліковано

2024-12-27

Як цитувати

Yuniardi, D., Madenda, S., Ridwan, R., Prihandoko, P., Abdillah, A. A., & Permana, S. (2024). Проектування та застосування ЗНМ для виявлення випромінень через тепловізію. Eastern-European Journal of Enterprise Technologies, 6(10 (132), 6–18. https://doi.org/10.15587/1729-4061.2024.317203

Номер

Розділ

Екологія