Розробка системи виявлення та класифікації внутрішніх дефектів труб

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2025.323293

Ключові слова:

внутрішній дефект труби, виявлення, класифікація, алгоритми штучного інтелекту, розпізнавання образів

Анотація

Об'єктом дослідження є виявлення та класифікація внутрішніх дефектів труб. Основною проблемою, що вимагає вирішення, є неефективність, висока вартість та низька точність традиційних методів ручного контролю, які часто вимагають великих витрат часу та схильні до людських помилок. Отримані результати включають створення мультимодальної платформи, що поєднує дані RGB-візуалізації та глибини з передовими алгоритмами штучного інтелекту, виявленням меж методом Кенні та заснованою на щільності просторовою кластеризацією для додатків з шумами (DBSCAN), забезпечуючи узагальнену середню точність (mAP) 93 % при виявленні та класифікації різних дефектів, таких як тріщини, корозія та засмічення. Короткий аналіз результатів показує, що висока продуктивність досягається завдяки синергії мультимодального зондування, розпізнавання образів за допомогою штучного інтелекту та надійної роботизованої навігації. Такий комплексний підхід забезпечує не тільки точність виявлення дефектів, але і їх виявлення в режимі реального часу. Особливості отриманих результатів, що безпосередньо спрямовані на вирішення визначеної проблеми, включають в себе високоточне виявлення дефектів в режимі реального часу та скорочення часу простою під час перевірки. Як наслідок, скорочується час перевірки, знижуються витрати та підвищується безпека трубопровідної системи, що забезпечує точне вимірювання показників (mAP 93 %) та зниження ризиків для безпеки праці. Розроблена система призначена для використання в традиційних промислових умовах, особливо у великих трубопровідних мережах та у випадках, коли традиційні методи малоефективні

Біографії авторів

Perizat Rakhmetova, Satbayev University

PhD Candidate, Senior-Lecturer

Department of Robotics and Technical Means of Automation

Gani Sergazin, Research Institute of Applied Science and Technologies

PhD, Researcher

Yeldos Altay, Satbayev University

PhD, Candidate of Sciences, Senior-Lecturer

Department of Robotics and Technical Means of Automation

Daniyar Dauletiya, Astana IT University

MSc in Computer Engineering, Head of the Laboratory

Research and Innovation Laboratory FabLab

Lazzat Kurmangaliyeva, Satbayev University

Associate Professor

Department of Robotics and Technical Means of Automation

Посилання

  1. Wang, W., Mao, X., Liang, H., Yang, D., Zhang, J., Liu, S. (2021). Experimental research on in-pipe leaks detection of acoustic signature in gas pipelines based on the artificial neural network. Measurement, 183, 109875. https://doi.org/10.1016/j.measurement.2021.109875
  2. Wong, B., McCann, J. A. (2021). Failure Detection Methods for Pipeline Networks: From Acoustic Sensing to Cyber-Physical Systems. Sensors, 21 (15), 4959. https://doi.org/10.3390/s21154959
  3. Barile, C., Casavola, C., Pappalettera, G., Kannan, V. P., Mpoyi, D. K. (2022). Acoustic Emission and Deep Learning for the Classification of the Mechanical Behavior of AlSi10Mg AM-SLM Specimens. Applied Sciences, 13 (1), 189. https://doi.org/10.3390/app13010189
  4. Altay, Y. A., Kuzivanov, D. O., Altay, D. A., Fedorov, A. V. (2024). Signal Processing for Acoustic Emission Signature Analysis and Defect Detection. 2024 26th International Conference on Digital Signal Processing and Its Applications (DSPA), 1–6. https://doi.org/10.1109/dspa60853.2024.10510110
  5. Wang, C., Tan, X. P., Tor, S. B., Lim, C. S. (2020). Machine learning in additive manufacturing: State-of-the-art and perspectives. Additive Manufacturing, 36, 101538. https://doi.org/10.1016/j.addma.2020.101538
  6. Sinha, S. K., Fieguth, P. W., Polak, M. A. (2003). Computer Vision Techniques for Automatic Structural Assessment of Underground Pipes. Computer-Aided Civil and Infrastructure Engineering, 18 (2), 95–112. https://doi.org/10.1111/1467-8667.00302
  7. Kim, H., Lee, B., Kim, R. (2006). Development of Computer-vision-based Pipe Inspection System. 2006 International Forum on Strategic Technology, 403–406. https://doi.org/10.1109/ifost.2006.312344
  8. Wang, M., Cheng, J. C. P. (2018). Development and Improvement of Deep Learning Based Automated Defect Detection for Sewer Pipe Inspection Using Faster R-CNN. Advanced Computing Strategies for Engineering, 171–192. https://doi.org/10.1007/978-3-319-91638-5_9
  9. Rayhana, R., Jiao, Y., Zaji, A., Liu, Z. (2021). Automated Vision Systems for Condition Assessment of Sewer and Water Pipelines. IEEE Transactions on Automation Science and Engineering, 18 (4), 1861–1878. https://doi.org/10.1109/tase.2020.3022402
  10. Moradi, S., Zayed, T., Golkhoo, F. (2019). Review on Computer Aided Sewer Pipeline Defect Detection and Condition Assessment. Infrastructures, 4 (1), 10. https://doi.org/10.3390/infrastructures4010010
  11. Oluwatosin, O. P., Syed, S. A., Apis, O., Kolawole, S. (2021). Application of Computer Vision in Pipeline Inspection Robot. Proceedings of the International Conference on Industrial Engineering and Operations Management. https://doi.org/10.46254/an11.20210374
  12. Colvalkar, A., Pawar, S. S., Patle, B. K. (2023). In-pipe inspection robotic system for defect detection and identification using image processing. Materials Today: Proceedings, 72, 1735–1742. https://doi.org/10.1016/j.matpr.2022.09.476
  13. Zholtayev, D., Dauletiya, D., Tileukulova, A., Akimbay, D., Nursultan, M., Bushanov, Y. et al. (2024). Smart Pipe Inspection Robot With In-Chassis Motor Actuation Design and Integrated AI-Powered Defect Detection System. IEEE Access, 12, 119520–119534. https://doi.org/10.1109/access.2024.3450502
  14. Haurum, J. B., Moeslund, T. B. (2021). Sewer-ML: A Multi-Label Sewer Defect Classification Dataset and Benchmark. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 13451–13462. https://doi.org/10.1109/cvpr46437.2021.01325
  15. Ru, G., Gao, B., Tang, Q., Jiang, S., Zhang, Y., Luo, F., Woo, W. L. (2023). Electromagnetic Coupling Sensing of Pipe In-Line Inspection System. IEEE Transactions on Instrumentation and Measurement, 72, 1–15. https://doi.org/10.1109/tim.2023.3310083
  16. Lyu, F., Zhou, X., Ding, Z., Qiao, X., Song, D. (2024). Application Research of Ultrasonic-Guided Wave Technology in Pipeline Corrosion Defect Detection: A Review. Coatings, 14 (3), 358. https://doi.org/10.3390/coatings14030358
  17. Niu, Y., Sun, L., Wang, Y., Shen, G., Shi, Y. (2024). New technology for pipeline defect detection. Science China Technological Sciences, 67 (4), 1294–1296. https://doi.org/10.1007/s11431-023-2473-x
  18. Mustafaev, B., Kim, S., Kim, E. (2023). Enhancing Metal Surface Defect Recognition Through Image Patching and Synthetic Defect Generation. IEEE Access, 11, 113339–113359. https://doi.org/10.1109/access.2023.3322734
  19. Li, Y., Wang, H., Dang, L. M., Song, H.-K., Moon, H. (2022). Vision-Based Defect Inspection and Condition Assessment for Sewer Pipes: A Comprehensive Survey. Sensors, 22 (7), 2722. https://doi.org/10.3390/s22072722
  20. Kenzhekhan, A., Bakytzhanova, A., Omirbayev, S., Tuieubayev, Y., Daniyalov, M., Yeshmukhametov, A. (2023). Design and Development of an In-Pipe Mobile Robot for Pipeline Inspection with AI Defect Detection System. 2023 23rd International Conference on Control, Automation and Systems (ICCAS), 579–584. https://doi.org/10.23919/iccas59377.2023.10316817
  21. Araújo, J. F., Ramos, V. M., Silva, C. A., Silva, H. D. (2024). Development of a Virtual Environment to Assist in the Identification and Analysis of Defects in Industrial Control Panels. IEEE Revista Iberoamericana de Tecnologias Del Aprendizaje, 19, 258–266. https://doi.org/10.1109/rita.2024.3475883
  22. Wang, X., Yang, L., Sun, T., Rasool, G., Sun, M., Hu, N., Guo, Z. (2023). A review of development and application of out-of-pipe detection technology without removing cladding. Measurement, 219, 113249. https://doi.org/10.1016/j.measurement.2023.113249
  23. Zhang, M., Guo, Y., Xie, Q., Zhang, Y., Wang, D., Chen, J. (2022). Defect identification for oil and gas pipeline safety based on autonomous deep learning network. Computer Communications, 195, 14–26. https://doi.org/10.1016/j.comcom.2022.08.001
  24. Changwang, S., Shaowei, H., Haifen, Z., Fuqu, P., Changxi, S., Hao, Q. (2024). Automatic Detection of Water Supply Pipe Defects Based on Underwater Image Enhancement and Improved YOLOX. Journal of Construction Engineering and Management, 150 (10). https://doi.org/10.1061/jcemd4.coeng-14919
  25. Fioravanti, C. C. B., Centeno, T. M., De Biase Da Silva Delgado, M. R. (2019). A Deep Artificial Immune System to Detect Weld Defects in DWDI Radiographic Images of Petroleum Pipes. IEEE Access, 7, 180947–180964. https://doi.org/10.1109/access.2019.2959810
  26. Lin, W., Li, P., Xie, X. (2022). A Novel Detection and Assessment Method for Operational Defects of Pipe Jacking Tunnel Based on 3D Longitudinal Deformation Curve: A Case Study. Sensors, 22 (19), 7648. https://doi.org/10.3390/s22197648
  27. Jeon, K.-W., Jung, E.-J., Bae, J.-H., Park, S.-H., Kim, J.-J., Chung, G. et al. (2024). Development of an In-Pipe Inspection Robot for Large-Diameter Water Pipes. Sensors, 24 (11), 3470. https://doi.org/10.3390/s24113470
  28. Luo, D., Du, K., Niu, D. (2024). Intelligent Diagnosis of Urban Underground Drainage Network: From Detection to Evaluation. Structural Control and Health Monitoring, 2024 (1). https://doi.org/10.1155/2024/9217395
Розробка системи виявлення та класифікації внутрішніх дефектів труб

##submission.downloads##

Опубліковано

2025-02-28

Як цитувати

Rakhmetova, P., Sergazin, G., Altay, Y., Dauletiya, D., & Kurmangaliyeva, L. (2025). Розробка системи виявлення та класифікації внутрішніх дефектів труб . Eastern-European Journal of Enterprise Technologies, 1(9 (133), 80–89. https://doi.org/10.15587/1729-4061.2025.323293

Номер

Розділ

Інформаційно-керуючі системи