Розробка пасивного охолодження з перфорованими пластинами та моніторингом у реальному часі для підвищення ефективності фотоелектричних систем

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2025.327590

Ключові слова:

пасивне охолодження, перфорована алюмінієва пластина, моніторинг в реальному часі, ефективність використання сонячної енергії, природна конвекція, терморегуляція

Анотація

Це дослідження зосереджене на підвищенні продуктивності фотоелектричних (ФЕ) модулів шляхом розробки пасивного методу охолодження з використанням перфорованих алюмінієвих пластин, що підтримується системою моніторингу в режимі реального часу. Основною проблемою є теплова неефективність фотоелектричних модулів, що працюють у спекотному, вологому середовищі, де накопичення тепла знижує вихід енергії. Система збору даних в реальному часі була розроблена з використанням Arduino для моніторингу напруги, струму, температури поверхні, вологості та сонячного випромінювання. Було протестовано чотири ідентичні полікристалічні фотомодулі; три з них були оснащені алюмінієвими пластинами з різним діаметром перфорації (10 мм, 12,5 мм, 15 мм), а один залишився неохолоджуваним в якості контролю. Результати показали, що модуль з перфорацією 15 мм мав найкращу продуктивність, досягнувши 61,04 Вт при піковому опроміненні (1404 Вт/м2) і знизивши температуру поверхні майже на 10°C. Ці результати демонструють, що посилення природної конвекції та випаровування завдяки більшій перфорації значно покращило терморегуляцію. Синхронізована система моніторингу підтвердила залежність між температурою та потужністю, зафіксувавши динаміку навколишнього середовища в режимі реального часу. Завдяки своїй енергонезалежності, низькій вартості та простоті, це інтегроване рішення особливо підходить для тропічних регіонів або автономних установок. Отримані результати створюють практичну основу для масштабованого розгортання пасивного охолодження в фотоелектричних системах, особливо там, де активне охолодження є неможливим

Біографії авторів

Armin Sofijan, Sriwijaya University

Doctor of Electrical Engineering

Department of Electrical Engineering

Riman Sipahutar, Sriwijaya University

Doctor of Mechanical Engineering, Professor

Department of Mechanical Engineering

Wirawan Adi Pradana, Sriwijaya University

Master of Electrical Engineering

Department of Electrical Engineering

Baginda Oloan Siregar, Sriwijaya University

Master of Electrical Engineering

Department of Electrical Engineering

Irwin Bizzy, Sriwijaya University

Doctor of Mechanical Engineering, Professor

Department of Mechanical Engineering

Siti Sailah, Sriwijaya University

Doctor of Physics Science

Department of Physics Science

Feby Ardianto, Muhammadiyah Palembang University

Doctor Candidate of Electrical Engineering

Department of Electrical Engineering

Surya Darma, Palembang University

Doctor Candidate of Electrical Engineering

Department of Electrical Engineering

Ananda Putri Kamila, Sriwijaya University

Bachelor of Electrical Engineering

Department of Electrical Engineering

Vina Alya Dhafia, Sriwijaya University

Bachelor of Electrical Engineering

Department of Electrical Engineering

Посилання

  1. Dambhare, M. V., Butey, B., Moharil, S. V. (2021). Solar photovoltaic technology: A review of different types of solar cells and its future trends. Journal of Physics: Conference Series, 1913 (1), 012053. https://doi.org/10.1088/1742-6596/1913/1/012053
  2. Qazi, A., Hussain, F., Rahim, N. ABD., Hardaker, G., Alghazzawi, D., Shaban, K., Haruna, K. (2019). Towards Sustainable Energy: A Systematic Review of Renewable Energy Sources, Technologies, and Public Opinions. IEEE Access, 7, 63837–63851. https://doi.org/10.1109/access.2019.2906402
  3. Shvedchykova, I., Trykhlieb, A., Trykhlieb, S., Demishonkova, S., Pavlenko, V. (2024). Determining the efficiency of restored photovoltaic modules under natural lighting conditions. Eastern-European Journal of Enterprise Technologies, 6 (8 (132)), 16–24. https://doi.org/10.15587/1729-4061.2024.317829
  4. Al-Bashir, A., Al-Dweri, M., Al-Ghandoor, A., Hammad, B., Al-Kouz, W. (2020). Analysis of effects of solar irradiance, cell temperature and wind speed on photovoltaic systems performance. International Journal of Energy Economics and Policy, 10 (1), 353–359. https://doi.org/10.32479/ijeep.8591
  5. Shaker, L. M., Al-Amiery, A. A., Hanoon, M. M., Al-Azzawi, W. K., Kadhum, A. A. H. (2024). Examining the influence of thermal effects on solar cells: a comprehensive review. Sustainable Energy Research, 11 (1). https://doi.org/10.1186/s40807-024-00100-8
  6. Bošnjaković, M., Stojkov, M., Katinić, M., Lacković, I. (2023). Effects of Extreme Weather Conditions on PV Systems. Sustainability, 15 (22), 16044. https://doi.org/10.3390/su152216044
  7. Yu, Z., Yang, H., Soin, N., Chen, L., Black, N., Xu, K., Sharma, P. K., Tsonos, C. et al. (2021). Bismuth oxyhalide based photo-enhanced triboelectric nanogenerators. Nano Energy, 89, 106419. https://doi.org/10.1016/j.nanoen.2021.106419
  8. Dwivedi, P., Sudhakar, K., Soni, A., Solomin, E., Kirpichnikova, I. (2020). Advanced cooling techniques of P.V. modules: A state of art. Case Studies in Thermal Engineering, 21, 100674. https://doi.org/10.1016/j.csite.2020.100674
  9. Sharaf, M., Yousef, M. S., Huzayyin, A. S. (2022). Review of cooling techniques used to enhance the efficiency of photovoltaic power systems. Environmental Science and Pollution Research, 29 (18), 26131–26159. https://doi.org/10.1007/s11356-022-18719-9
  10. Sheik, M. S., Kakati, P., Dandotiya, D., M, U. R., S, R. C. (2022). A comprehensive review on various cooling techniques to decrease an operating temperature of solar photovoltaic panels. Energy Nexus, 8, 100161. https://doi.org/10.1016/j.nexus.2022.100161
  11. Boubakr, G., Gu, F., Farhan, L., Ball, A. (2022). Enhancing Virtual Real-Time Monitoring of Photovoltaic Power Systems Based on the Internet of Things. Electronics, 11 (15), 2469. https://doi.org/10.3390/electronics11152469
  12. Muhanji, S. O., Barrows, C., Macknick, J., Farid, A. M. (2021). An enterprise control assessment case study of the energy–water nexus for the ISO New England system. Renewable and Sustainable Energy Reviews, 141, 110766. https://doi.org/10.1016/j.rser.2021.110766
  13. Srithar, K., Akash, K., Nambi, R., Vivar, M., Saravanan, R. (2023). Enhancing photovoltaic efficiency through evaporative cooling and a solar still. Solar Energy, 265, 112134. https://doi.org/10.1016/j.solener.2023.112134
  14. Alktranee, M., Bencs, P. (2023). Experimental comparative study on using different cooling techniques with photovoltaic modules. Journal of Thermal Analysis and Calorimetry, 148 (9), 3805–3817. https://doi.org/10.1007/s10973-022-11940-1
  15. Elbreki, A. M., Muftah, A. F., Sopian, K., Jarimi, H., Fazlizan, A., Ibrahim, A. (2021). Experimental and economic analysis of passive cooling PV module using fins and planar reflector. Case Studies in Thermal Engineering, 23, 100801. https://doi.org/10.1016/j.csite.2020.100801
  16. Bashir, M. A., Ali, H. M., Khalil, S., Ali, M., Siddiqui, A. M. (2014). Comparison of Performance Measurements of Photovoltaic Modules during Winter Months in Taxila, Pakistan. International Journal of Photoenergy, 2014, 1–8. https://doi.org/10.1155/2014/898414
  17. Cengiz, M., Kayri, İ., Aydın, H. (2024). A collated overview on the evaporative cooling applications for photovoltaic modules. Renewable and Sustainable Energy Reviews, 197, 114393. https://doi.org/10.1016/j.rser.2024.114393
  18. Sofijan, A., Nawawi, Z., Suprapto, B. Y., Bizzy, I., Sipahutar, R. (2020). Passive cooling using perforated aluminum plate to improve efficiency on monocrystalline of 100 Wp photovoltaic. IOP Conference Series: Materials Science and Engineering, 909 (1), 012006. https://doi.org/10.1088/1757-899x/909/1/012006
  19. Alktranee, M., Bencs, P. (2022). Effect of Evaporative Cooling on Photovoltaic Module Performance. Process Integration and Optimization for Sustainability, 6 (4), 921–930. https://doi.org/10.1007/s41660-022-00268-w
  20. Ali, H., Mahmood, M., Bashir, M., Ali, M., Siddiqui, A. (2016). Outdoor testing of photovoltaic modules during summer in Taxila, Pakistan. Thermal Science, 20 (1), 165–173. https://doi.org/10.2298/tsci131216025a
  21. Sakinah, A., Bandri, S., Nur Putra, A. M., Anthony, Z., Warmi, Y. (2024). Monitoring System for Solar Panel Characteristics Using the Internet of Things (IoT). The Southeast Asian Journal of Advance Engineering and Technology Original Research, 1 (2), 64–70.
  22. Vijay, K. S., Sasane, S., Bajare, M., Deshmukh, R. (2024). Real Time Monitoring of Temperature And Humidity Using LabVIEW and ML. International Journal for Research in Applied Science and Engineering Technology, 12 (5), 4701–4710. https://doi.org/10.22214/ijraset.2024.62675
  23. Akhtar, M. U., Iqbal, M. T. (2024). Development and Evaluation of an Arduino-Based Data Logging System Integrated with Microsoft Excel for Monitoring On-Grid Photovoltaic Systems. European Journal of Electrical Engineering and Computer Science, 8 (3), 29–37. https://doi.org/10.24018/ejece.2024.8.3.622
  24. Abdullah, M. H., Ghani, S. A. C., Zaulkafilai, Z., Tajuddin, S. N. (2017). Development open source microcontroller based temperature data logger. IOP Conference Series: Materials Science and Engineering, 257, 012015. https://doi.org/10.1088/1757-899x/257/1/012015
  25. Zhao, Y., Wang, S., Ge, M., Li, Y., Yang, Y. (2018). Energy and exergy analysis of thermoelectric generator system with humidified flue gas. Energy Conversion and Management, 156, 140–149. https://doi.org/10.1016/j.enconman.2017.10.094
  26. Peng, L., Mai, J., Hu, P., Lai, X., Lin, Z. (2011). Optimum design of the slotted-interdigitated channels flow field for proton exchange membrane fuel cells with consideration of the gas diffusion layer intrusion. Renewable Energy, 36 (5), 1413–1420. https://doi.org/10.1016/j.renene.2010.11.031
  27. Wang, L., Lin, X., Chai, L., Peng, L., Yu, D., Chen, H. (2019). Cyclic transient behavior of the Joule–Brayton based pumped heat electricity storage: Modeling and analysis. Renewable and Sustainable Energy Reviews, 111, 523–534. https://doi.org/10.1016/j.rser.2019.03.056
  28. Zaretsky, E. B., Kanel, G. I., Kalabukhov, S. (2020). Shock compression of paraffin–poly-methylmethacrylate (PMMA) mixture. Journal of Applied Physics, 127 (24). https://doi.org/10.1063/5.0013020
  29. Hand, B., & Cashman, A. (2020). A review on the historical development of the lift-type vertical axis wind turbine: From onshore to offshore floating application. Sustainable Energy Technologies and Assessments, 38, 100646. https://doi.org/10.1016/j.seta.2020.100646
  30. Kumar, S., Upadhyay, R., Pradhan, B. (2020). Performance enhancement of heterojunction ZnO/PbS quantum dot solar cells by interface engineering. Solar Energy, 211, 283–290. https://doi.org/10.1016/j.solener.2020.09.063
  31. Pilarczyk, M., Węglowski, B. (2019). Determination and validation of transient temperature fields within a cylindrical element using the inverse heat conduction method. Applied Thermal Engineering, 150, 1224–1232. https://doi.org/10.1016/j.applthermaleng.2019.01.079
  32. Radia, M. A. A., Nimr, M. K. E., Atlam, A. S. (2023). IoT-based wireless data acquisition and control system for photovoltaic module performance analysis. E-Prime - Advances in Electrical Engineering, Electronics and Energy, 6, 100348. https://doi.org/10.1016/j.prime.2023.100348
  33. Samadianfard, S., Hashemi, S., Kargar, K., Izadyar, M., Mostafaeipour, A., Mosavi, A. et al. (2020). Wind speed prediction using a hybrid model of the multi-layer perceptron and whale optimization algorithm. Energy Reports, 6, 1147–1159. https://doi.org/10.1016/j.egyr.2020.05.001
  34. Dixit, S., Arora, R., Kumar, K., Bansal, S., Vatin, N., Araszkiewicz, K., Epifantsev, K. (2022). Replacing E-waste with coarse aggregate in architectural engineering and construction industry. Materials Today: Proceedings, 56, 2353–2358. https://doi.org/10.1016/j.matpr.2021.12.154
  35. Gultom, E., Muzhoffar, D. A. F., Budiyanto, M. A., Riadi, A., Rivai, A. (2025). Real-time prediction of higher heating value of coal in coal-fired power plants using operating parameters. Eastern-European Journal of Enterprise Technologies, 1 (8 (133)), 68–78. https://doi.org/10.15587/1729-4061.2025.320573
  36. Sofijan, A. (2022). Experimental Analysis of ACP on Photovoltaics as Free Convection for Increasing Output Power. Przegląd Elektrotechniczny, 1 (5), 123–127. https://doi.org/10.15199/48.2022.05.22
  37. Sofijan, A., Nawawi, Z., Yudho Suprapto, B., Sipahutar, R., Bizzy, I. (2020). Performance Evaluation Solar Charge Controller on Solar Power System Home-Based SPV Amorphous 80 Watt-peak. Journal of Physics: Conference Series, 1500 (1), 012004. https://doi.org/10.1088/1742-6596/1500/1/012004
  38. Adipradana, W., Sofijan, A., Rahmawati, Bizzy, I., Sipahutar, R., Fajri, M. A. (2021). Datalogger Experimental Analysis Based on Arduino Mega 2560 on a 100 Wp Monocrystalline Solar Panel Using Perforated Plate. Proceedings of the 4th Forum in Research, Science, and Technology (FIRST-T1-T2-2020). https://doi.org/10.2991/ahe.k.210205.033
Розробка пасивного охолодження з перфорованими пластинами та моніторингом у реальному часі для підвищення ефективності фотоелектричних систем

##submission.downloads##

Опубліковано

2025-06-25

Як цитувати

Sofijan, A., Sipahutar, R., Pradana, W. A., Siregar, B. O., Bizzy, I., Sailah, S., Ardianto, F., Darma, S., Kamila, A. P., & Dhafia, V. A. (2025). Розробка пасивного охолодження з перфорованими пластинами та моніторингом у реальному часі для підвищення ефективності фотоелектричних систем. Eastern-European Journal of Enterprise Technologies, 3(5 (135), 30–38. https://doi.org/10.15587/1729-4061.2025.327590

Номер

Розділ

Прикладна фізика