Розробка методу виявлення кібератак на інформаційні системи на основі технологій штучного інтелекту
DOI:
https://doi.org/10.15587/1729-4061.2025.329258Ключові слова:
кібер атаки, класифікаційне дерево, генетичний алгоритм, дестабілізуючі фактори, угруповання військ (сил)Анотація
Об’єктом дослідження є штучні імунні системи. Проблема, яка вирішується в дослідженні, – підвищення оперативності виявлення кібератак в інформаційних системах при забезпеченні заданої збіжності незалежно від кількості дестабілізуючих факторів. Предметом дослідження є процес виявлення кібератак. Запропоновано метод виявлення кібератак на інформаційні системи на основі технологій штучного інтелекту. Оригінальність методу полягає у використанні додаткових удосконалених процедур, які дозволяють:
– досягти виставлення початкової популяції агентів зграї комбінованого здійснювати верифікацію параметрів інформаційної системи за допомого удосконаленого алгоритму зграї кажанів. Зазначене дозволяє мінімізувати похибку введення не коректних даних для роботи даних про стан інформаційної системи оперативного угруповання військ (сил);
– виконати первинну ідентифікацію атак, які притаманні зазначеній інформаційній системі за допомогою класифікаційного дерева;
– здійснити адаптацію під тип та тривалість кібератаки за рахунок багаторівневої адаптації штучної імунної системи;
– провести первинний відбір антитіл до кожного з роїв штучної імунної системи за допомогою удосконаленого генетичного алгоритму;
– здійснювати навчання антитіл загального рою антитілами елітного рою, чим забезпечується можливість глибокого навчання;
– проводити заміну непридатних для пошуку осіб за рахунок оновлення популяції антитіл;
– здійснювати одночасний пошук рішення в різних напрямках ;
– розрахувати необхідну кількість обчислювальних ресурсів, яких необхідно залучити у разі неможливості проведення розрахунків наявними обчислювальними ресурсами.
Проведений приклад використання запропонованого методу на прикладі виявлення кібератак в оперативному угрупованні військ (сил), який показав підвищення точності в середньому на 16 %, підвищення оперативності в середньому на 12 %, при забезпеченні високої збіжності отриманих результатів на рівні 95.23 %
Посилання
- Sova, O., Radzivilov, H., Shyshatskyi, A., Shvets, P., Tkachenko, V., Nevhad, S. et al. (2022). Development of a method to improve the reliability of assessing the condition of the monitoring object in special-purpose information systems. Eastern-European Journal of Enterprise Technologies, 2 (3 (116)), 6–14. https://doi.org/10.15587/1729-4061.2022.254122
- Dudnyk, V., Sinenko, Y., Matsyk, M., Demchenko, Y., Zhyvotovskyi, R., Repilo, I. et al. (2020). Development of a method for training artificial neural networks for intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (2 (105)), 37–47. https://doi.org/10.15587/1729-4061.2020.203301
- Sova, O., Shyshatskyi, A., Salnikova, O., Zhuk, O., Trotsko, O., Hrokholskyi, Y. (2021). Development of a method for assessment and forecasting of the radio electronic environment. EUREKA: Physics and Engineering, 4, 30–40. https://doi.org/10.21303/2461-4262.2021.001940
- Pievtsov, H., Turinskyi, O., Zhyvotovskyi, R., Sova, O., Zvieriev, O., Lanetskii, B., Shyshatskyi, A. (2020). Development of an advanced method of finding solutions for neuro-fuzzy expert systems of analysis of the radioelectronic situation. EUREKA: Physics and Engineering, 4, 78–89. https://doi.org/10.21303/2461-4262.2020.001353
- Zuiev, P., Zhyvotovskyi, R., Zvieriev, O., Hatsenko, S., Kuprii, V., Nakonechnyi, O. et al. (2020). Development of complex methodology of processing heterogeneous data in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 4 (9 (106)), 14–23. https://doi.org/10.15587/1729-4061.2020.208554
- Wang, J., Neil, M., Fenton, N. (2020). A Bayesian network approach for cybersecurity risk assessment implementing and extending the FAIR model. Computers & Security, 89, 101659. https://doi.org/10.1016/j.cose.2019.101659
- Matheu-García, S. N., Hernández-Ramos, J. L., Skarmeta, A. F., Baldini, G. (2019). Risk-based automated assessment and testing for the cybersecurity certification and labelling of IoT devices. Computer Standards & Interfaces, 62, 64–83. https://doi.org/10.1016/j.csi.2018.08.003
- Henriques de Gusmão, A. P., Mendonça Silva, M., Poleto, T., Camara e Silva, L., Cabral Seixas Costa, A. P. (2018). Cybersecurity risk analysis model using fault tree analysis and fuzzy decision theory. International Journal of Information Management, 43, 248–260. https://doi.org/10.1016/j.ijinfomgt.2018.08.008
- Folorunso, O., Mustapha, O. A. (2015). A fuzzy expert system to Trust-Based Access Control in crowdsourcing environments. Applied Computing and Informatics, 11 (2), 116–129. https://doi.org/10.1016/j.aci.2014.07.001
- Mohammad, A. (2020). Development of the concept of electronic government construction in the conditions of synergetic threats. Technology Audit and Production Reserves, 3 (2 (53)), 42–46. https://doi.org/10.15587/2706-5448.2020.207066
- Bodin, L. D., Gordon, L. A., Loeb, M. P., Wang, A. (2018). Cybersecurity insurance and risk-sharing. Journal of Accounting and Public Policy, 37 (6), 527–544. https://doi.org/10.1016/j.jaccpubpol.2018.10.004
- Cormier, A., Ng, C. (2020). Integrating cybersecurity in hazard and risk analyses. Journal of Loss Prevention in the Process Industries, 64, 104044. https://doi.org/10.1016/j.jlp.2020.104044
- Hoffmann, R., Napiórkowski, J., Protasowicki, T., Stanik, J. (2020). Risk based approach in scope of cybersecurity threats and requirements. Procedia Manufacturing, 44, 655–662. https://doi.org/10.1016/j.promfg.2020.02.243
- Perrine, K. A., Levin, M. W., Yahia, C. N., Duell, M., Boyles, S. D. (2019). Implications of traffic signal cybersecurity on potential deliberate traffic disruptions. Transportation Research Part A: Policy and Practice, 120, 58–70. https://doi.org/10.1016/j.tra.2018.12.009
- Promyslov, V. G., Semenkov, K. V., Shumov, A. S. (2019). A Clustering Method of Asset Cybersecurity Classification. IFAC-PapersOnLine, 52 (13), 928–933. https://doi.org/10.1016/j.ifacol.2019.11.313
- Zarreh, A., Saygin, C., Wan, H., Lee, Y., Bracho, A. (2018). A game theory based cybersecurity assessment model for advanced manufacturing systems. Procedia Manufacturing, 26, 1255–1264. https://doi.org/10.1016/j.promfg.2018.07.162
- Kosko, B. (1986). Fuzzy cognitive maps. International Journal of Man-Machine Studies, 24 (1), 65–75. https://doi.org/10.1016/s0020-7373(86)80040-2
- Koval, M., Sova, O., Shyshatskyi, A., Artabaiev, Y., Garashchuk, N., Yivzhenko, Y. et al. (2022). Improving the method for increasing the efficiency of decision-making based on bio-inspired algorithms. Eastern-European Journal of Enterprise Technologies, 6 (4 (120)), 6–13. https://doi.org/10.15587/1729-4061.2022.268621
- Maccarone, A. D., Brzorad, J. N., Stone, H. M. (2008). Characteristics And Energetics Of Great Egret And Snowy Egret Foraging Flights. Waterbirds, 31 (4), 541–549. https://doi.org/10.1675/1524-4695-31.4.541
- Litvinenko, O., Kashkevich, S., Shyshatskyi, A., Dmytriieva, O., Neronov, S., Plekhova, G. et al.; Shyshatskyi, A. (Ed.) (2024). Information and control systems: modelling and optimizations. Kharkiv: TECHNOLOGY CENTER PC, 180. https://doi.org/10.15587/978-617-8360-04-7
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2025 Salman Rasheed Owaid, Andrii Shyshatskyi, Svitlana Kashkevich, Vitalii Stryhun, Ganna Plekhova, Elena Odarushchenko, Andrii Hrymud, Olena Shaposhnikova, Serhii Petruk, Hennadii Miahkykh

Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.






